
Randomized Algorithms 2013A

Lecture 8 – Edge Sparsification (cont’d) and Distance Oracles∗

Robert Krauthgamer

We continue our plan from the previous class to prove the following theorem.

Theorem 7 [Benczur-Karger, 1996]:

For every weighted graph G = (V,E) on n vertices and error parameter ε > 0, there is a weighted
subgraph G′ = (V,E′) with O(ε−2n log n) edges such that G′ ∈ (1 ± ε)G. Moreover, G′ can be
constructed in O(|E| log2 n) time.

We will actually prove a slightly weaker version, for unweighted graphs, with another log2 n factor,
and without the near-linear time algorithm.

Main idea: Sample edges non-uniformly, each edge e with probability pe that is inversely propor-
tional to its “connectivity” ce. So “dense” regions will be sampled with smaller probability, thereby
reducing the number of edges there more aggresively.

Definitions of Connectivity:

A graph is k-connected if every cut in it has capacity ≥ k.

A k-strong component is a maximal vertex-induced subgraph that is k-connected.

Example: Consider 3 cliques, connected by one cycle (triangle).

Exer: Prove there is a unique partitioning of the vertices into k-strong components. (Hint: If V1

and V2 are k-connected and have non-empty intersection, then also V1 ∪ V2 is k-connected.)

It follows that the k-strong components partition the vertices of the graph, obtained by repeatedly
removing every cut of capacity < k. Moreover, a (k+1)-strong components is a refinement of that
partition.

The strong connectivity of an edge e ∈ E, denoted ce, is the maximum value k such that e is
contained in a k-strong component. An edge is called k-strong if its strong connectivity is at least
k; otherwise k-weak.

Note that strong connectivity differs from the usual definition of connectivity. (Example: n parallel
paths between s, t.)

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Construction of sparsifier G′:

Set q = qε := 4(d+2)ε−2 lnn, and sample every e ∈ E with probability pe = min{q/ce, 1}, in which
case it is given weight 1/pe.

Lemma 8: With probability ≥ 1−O(1/nd), the resulting graph G′ has O(qn) edges.

The proof for the expected number of edges was seen in class, using the following claim: A graph
with total edge weight ≥ k(n− 1) has a k-strong component (which may be the graph itself).

Exer: Complete the high-probability proof using Chernoff bound.

Lemma 9: With high probability G′ ∈ (1± ε log |E|)G.

Lemmas 8,9 together indeed prove (a weaker version of) Theorem 7, by simply using a smaller
value ε1 = ε/ log |E|.

Idea of Proof: The proof ws seen in class using uniform sampling (Theorem 6). The idea is to
describe the same algorithm in a different way, as if we divide the sampling process into phases,
and phase i = 0, 1, . . . flips the coins only for edges e with 2i ≤ ce < 2i+1. The analysis then applies
Theorem 6 separately on each 2i-strong component, which means that we basically “remove” edges
with ce < 2i. Inside each such component, the edges from level i are chosen at random, but all
edges with ce ≥ 2i+1 are kept (deterministically).

Exer: It is sometimes easier/faster to compute an approximation to ce. So suppose we use in pe an
approximation to ce, say within factor 3, i.e., values c′e ∈ [ce, 3ce]. Explain how the theorem and
analysis shown in class would extend.

Distance Oracles

Goal: Preprocess a graph G = (V,E) with edge lengths l : E → R+ into a (small) data structure
that can answer in time O(1) queries about the distance d = dG (between any two vertices u, v ∈ V).

We denote n = |V | and m = |E|.

Naive solution: Store all
(
n
2

)
distances in a matrix/array, with direct access in time O(1).

Can one “compress” the information, perhaps at the expense of accuracy, i.e., the distances are
only approximated?

Theorem 10 [Thorup-Zwick, 2001]: Let k > 1 be an integer. There is an algorithm that
preprocesses the graph G in expected time O(kmn1/k), and produces a data structure that can
answer a distance query in time O(k) and with approximation factor 2k − 1.

Remark: We will ignore the preprocessing time, and focus on storage (space). In particular, we
assume the shortest-path between every two vertices is computed, and essentially use only the fact
that distances satisfy the triangle inequality.

Algorithm Prep(G,k):

1. A0 = V ; Ak = ∅.

2

2. for i = 1, . . . , k − 1

3. Construct Ai by including each u ∈ Ai−1 with probability 1/n1/k.

4. for every v ∈ V

5. for i = 0, . . . , k − 1

6. store d(v,Ai) = min{d(v, w) : w ∈ Ai} and the minimizer w as pi(v)

7. set d(v,Ak) = ∞.

8. store B(v) = ∪k−1
i=0 {w ∈ Ai \ Ai−1 : d(v, w) < d(v,Ai+1)} in a hash table that answers

whether w
?
∈ B(v) and if so, what is its distance to v, in O(1) worst-case time.

Remark: We can use a two-level hash table of size O(|B(v)|).

Intuition of preprocessing:

The sets Ai are subsamples of V at different “levels”, and provide “landmarks”.

Each pi(v) is just the level i landmark closest to v.

What is a set B(v)? sort V by distance from v, and partition it into k levels (rings) at positions
n1/k, n2/k, . . .; store n1/k random vertices from each ring.

Analysis of preprocessing storage: The only concern is the
∑

v |B(v)|, and this was sketched
in class.

Exer: Prove that for every v ∈ V and i ∈ {0, . . . , k − 1},

E[|B(v) ∩Ai|] ≤ n1/k.

Algorithm Query(u,v):

1. w = u; i = 0

2. while w /∈ B(v)

3. i = i+ 1

4. (u, v) = (v, u) //swap

5. w = pi(u)

6. return d(u,w) + d(w, v)

The runtime is obviously O(k).

Analysis of query algorithm: The entire Ak−1 ⊆ B(v), hence some answer is always returned,
and the number of u− v swaps (the final i) is at most k − 1.

Let ∆ = d(u, v). We claim that each swap of u, v increases d(w, u) by at most ∆; denoting by
ui, wi etc. the values at the end of iteration i, we claim that d(wi, ui) ≤ d(wi−1, ui−1) + ∆. This
will imply the approximation factor (strech bound), since we start with d(w0, u0) = 0, at the final
i we have d(wi, ui) ≤ i ·∆ ≤ (k − 1)∆, and thus also d(wi, vi) ≤ d(wi, ui) + d(ui, vi) ≤ k∆.

3

Suppose iteration i passes the while loop’s condition. Then wi−1 /∈ B(vi−1) = B(ui). By the
construction of B(ui), there must be some vertex in Ai that is even closer to ui than wi−1, i.e.,
d(ui, Ai) ≤ d(ui, wi−1) hence

d(ui, wi) = d(ui, Ai) ≤ d(ui, wi−1) ≤ ∆+ d(ui−1, wi−1).

4

