Randomized Algorithms 2015A Lecture 12 – Compressed Sensing and RIP matrices^{*}

Robert Krauthgamer

1 Compressed Sensing

Problem definition: We wish to learn an unknown vector $x \in \mathbb{R}^n$ through linear measurements, which means we choose a vector $a \in \mathbb{R}^n$ and observe the inner-product $a^T x$.

We want to minimize m, the number of linear measurements. If they are non-adaptive, then the measurement algorithm (without decoding part) can be described as a matrix $A \in \mathbb{R}^{m \times n}$.

Naive solution: Any choice of m = n linear measurements that are linearly independent (i.e., A is invertible) is clearly sufficient (and also necessary).

Sparsity: We may know (by "prior information") that x is k-sparse, i.e., has at most k non-zeros. We will actually focus on almost k-sparse vector in the sense that x = x' + z where x' is sparse and z is "noise", say $||z||_1$ is small. This is essentially a linear sketch for sparse inputs.

Exer: See if the results about sketching heavy hitters can be used here and what bounds do they imply.

Turns out that $m = O(k \log n)$ measurements suffice, and A can be taken to be a matrix of independent Gaussians.

Algorithmic approach: Recall we are given the vector of observations, which is the product Ax. Under exact k-sparsity $||x||_0 \le k$, an ideal algorithm could be to solve

 $\min\{\|x^*\|_0 : Ax^* = Ax\}.$

In the general case, our algorithm will minimize instead the ℓ_1 -norm

 $\min\{\|x^*\|_1 : Ax^* = Ax\}.$

Exer: Verify that solving this problem (computing x^*) can be done in polynomial time using linear programming.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Theorem 1: Define $E_1^k(x) = \min\{||x - x'||_1 : x' \text{ is } k\text{-sparse}\}$. Then with probability at least 1 - 2/n over the choice of A,

$$\|x^* - x\|_2 = O(E_1^k(x)/\sqrt{k}).$$
(1)

This formalizes the scenario mentioned above, with $E_1^k(x) = ||z||_1$, and then the approximation to true x' depends only on magnitude of noise. In particular, if x was exactly k-sparse, then we obtain exact recovery.

The statement provides a so-called "for each" guarantee – for each $x \in \mathbb{R}^n$, with high probability the approximation (1) holds. We will actually prove something stronger, called "for all" guarantee – with high probability the approximation (1) holds for all $x \in \mathbb{R}^n$.

RIP: The key will be to prove that WHP A has the following property: A matrix $A \in \mathbb{R}^{m \times n}$ satisfies the (k, δ) -Restricted Isometry Property (RIP) if for every k-sparse vector $x \in \mathbb{R}^n$,

$$(1-\delta)\|x\|_{2} \le \|Ax\|_{2} \le (1+\delta)\|x\|_{2}.$$
(2)

Remark: this condition is equivalent to requiring that for every submatrix of A a consisting of k columns, all the singular values lie in the range $[1 - \delta, 1 + \delta]$.

The theorem follows immediately from the following two theorems.

Theorem 2: For suitable $m = O(k \log n)$, if the entries of $A \in \mathbb{R}^{m \times n}$ are independent Gaussians with distribution N(0, 1/k), then with property at least 1 - 2/n, matrix A is (k, 1/3)-RIP.

Theorem 3: If A is (25k, 1/3)-RIP then (for all x) (1) holds.

2 Constructing RIP matrix (Proof of Theorem 2)

Claim 4 (Crude Bound): WHP,

 $\forall x \in \mathbb{R}^n, \qquad \|Ax\|_2 \le n^2 \|x\|_2.$

The proof, based on straightforward calculation, was seen in class.

Proof of theorem 2: The proof seen in class is based on a union bound over all subsets $T \subset [n]$ of size |T| = k; for each such T, the problem reduces to proving that for a matrix $B \in \mathbb{R}^{m \times k}$ of independent Gaussians N(0, 1/k), with high probability

$$\forall y \in \mathbb{R}^k, \qquad \frac{2}{3} \|y\|_2 \le \|By\|_2 \le \frac{4}{3} \|y\|_2. \tag{3}$$

The latter is achieved by discretizing the unit sphere in \mathbb{R}^k , using Claim 5 below, applying on that discrete set the JL-lemma, and then extending the bound to the entire sphere. Overall, we get a failure probability $\binom{n}{k}|P|2^{-\Omega(m)} \leq 2^{O(k\log n)-\Omega(m)} \leq 1/n$, which proves Theorem 2.

Claim 5: For every $\varepsilon \in (0,1)$ there is a set $P \subset S$ of size $O(1/\varepsilon)^k$ that is an ε -net of S, i.e., for every $x \in S$ there is $p \in P$ such that $||p - x|| \leq \varepsilon$.

Exer: Does the analysis above actually work for $m = O(k \log \frac{n}{k})$? (This is effective to beat the trivial bound m = n when k is "large".)

Exer: Let the matrix $A \in \mathbb{R}^{n \times n}$ have independent $\{\pm 1\}$ entries. Prove that with high probability $||A||_2 = \sup_{||x||_2=1} ||Ax||_2$ is at most $O(\sqrt{n \log n})$. (Using one more idea, it is actually possible to prove a better bound of $O(\sqrt{n})$.)

3 ℓ_1 -decoding (Proof of Theorem 3)

To simplify notation, let $h = x^* - x$, and recall our goal is to bound $||h||_2$. WLOG order the coordinates such that

- $|x_1|, ..., |x_k|$ are all at least $|x_{k+1}|, ..., |x_n|$.
- $|h_{k+1}| \geq \cdots \geq |h_n|.$

Define the sets of indices

- $T_0 = \{1, \ldots, k\}$
- $T_1 = \{k+1, \dots, 26k\}$
- $T_2 = \{26k + 1, \dots, 51k\},\$

and so forth. Notice that $|T_0| = k$ and $|T_i| = 25k$ for all $i \ge 1$.

Define also $T_{01} = T_0 \cup T_1$, and $\overline{T_0} = [n] \setminus T_0$. Let X_T be the restriction of x to coordinates in the set T, and define (recall our ordering)

$$\varepsilon = E_1^k(x) = \|x_{\overline{T_0}}\|_1.$$

Recall that our goal is to bound $||h||_2 \leq O(1/\sqrt{k})\varepsilon$.

Claim 6: $||h_{\overline{T_0}}||_1 \le ||h_{T_0}||_1 + O(\varepsilon).$

Claim 7: $\|h_{\overline{T_{01}}}\|_2 \le \|h_{T_0}\|_2 + O(\varepsilon/\sqrt{k}).$

Claim 8: $||h_{T_{01}}||_2 \le O(\varepsilon/\sqrt{k}).$

Proof of Theorem 3: Using triangle inequality, then Claim 7 and then 8,

$$\|x^* - x\|_2 = \|h\|_2 \le \|h_{T_{01}}\|_2 + \|h_{\overline{T_{01}}}\|_2 \le 2\|h_{T_{01}}\|_2 + O(\varepsilon/\sqrt{k}) \le O(\varepsilon/\sqrt{k}).$$

QED.

We did not cover in class the proof of the three claims above; their proof can be found in Nick Harvey's lecture notes (Lecture 8). (Claim 6 is needed to prove of Claims 7 and 8.)