
Randomized Algorithms 2015A

Lecture 5 – Edge Sparsification for Cuts∗

Robert Krauthgamer

1 Edge Sparsification for Cuts

Cut Sparsifier:

Input: a graph G = (V,E), for simplicity we will sometimes assume unit capacities.

Goal: construct a sparse graph G′ that has the same cut values, up to approximation factor 1± ε.

Applications: Smaller storage or communication (e.g., sending G to a smartphone, or receiving
Gi’s from different locations to compute on G1 + · · ·+Gk), and potentially faster computation of
min/max cut problems.

We shall actually allow parallel edges, i.e. let G be a multi-graph, and we can thus actually handle
“small” weights. For two graphs on the same vertex-set, we write G ≤ G′ if

∀S ⊂ V, capG(S, S̄) ≤ capG′(S, S̄).

Our goal will be to build G′ such that G′ ∈ (1± ε)G, called a (1 + ε)-cut sparsifier.

Clique example: Suppose G is a clique on n vertices. Let G′ be a random graph Gn,p for p
“sufficiently large” (p ≥ 100ε−2 log n). Prove that with high probability G′ ∈ (1± ε)G.

Hint: Consider the cuts (S, S̄) by analyzing separately each |S|.

First attempt – subsampling:

Let’s sample (i.e. keep) every edge independently with probability p ∈ [0, 1]. Denote the resulting
graph G′ = (V,E′). Consider a cut (S, S̄), and suppose it’s capacity in G is c := capG(S, S̄). Denote
the capacity of the corresponding cut in G′ by a random variable c′ := capG′(S, S̄). Then

E[c′] = pc.

So in expectation, cuts are preserved up to scaling by factor p. This can be “corrected” by giving
every sampled edge capacity 1/p. But is c′ likely to be close to its expectation?

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Analysis of subsampling: Using the Chernoff concentration bound,

Pr[c′ > (1 + ε)Ec′] ≤ e−ε2pc/3.

Suppose we make sure that p ≥ 3d lnn
ε2ĉ

≥ 3d lnn
ε2c

for some fixed d > 0 (say d = 5); then the RHS is
≤ 1/nd. And since a similar bound applies to deviation in the other direction, we get

Pr[c′ /∈ (1± ε)Ec′] ≤ 2/nd.

But is it possible to guarantee this approximation to all cuts? There are about 2n such cuts....

The answer is yes, because the number of small cuts is not too large. We can then apply several
“smaller” union bounds, each with number of events (cuts) that is inversely proportional to their
probabilities.

Counting minimum cuts: We saw in previous weeks.

Theorem 1 [Karger 1993]: For every connected graph, the number of distinct cuts attaining the
minimum value is ≤ n(n− 1)/2.

Corollary 2: For every α ≥ 1 and every connected graph, the number of distinct cuts whose value
is within factor α of the minimum is ≤ n2α.

Exer: prove corollary 2 by extending the proof of Theorem 1.

Theorem 3 [Karger]: Let G be a graph on n vertices and minimum cut capacity ĉ. Construct

G′ by including every edge from G with probability 1 ≥ p ≥ 6(d+2) lnn
ε2ĉ

. Then with probability
≥ 1−O(1/nd), every cut in G′ has capacity within 1± ε factor from its expectation.

Illustration: consider applying to a clique where ĉ = Θ(n2), and to a graph with two cliques
connected by one edge where ĉ = 1.

The proof was seen in class. The main idea is that by Corollary 2, the number of small cuts is not
too large. We can then apply several “smaller” union bounds, each with number of events (cuts)
that is inversely proportional to their probabilities.

Exer: Where did we use the fact that G is unweighted? What could happen with edge weights
< 1? and > 1?

Exer: Let cmax denote the value of a maximum cut in the graph G. Prove that the expected number
of edges in G′ is Θ( 1

ε2
cmax
ĉ · log n). (Hint: prove that |E|/2 ≤ cmax ≤ |E| by considering a random

bipartition.)

Here is a slightly more general version of this theorem.

Theorem 4 [Karger]: Let H be an n-vertex graph and Xe ∈ [0,M ] for e ∈ E(H) be independent
random variables. Let H(Xe) be a random graph obtained from G by placing edge weights equal to
Xe, and denote by c̃ the minimum expected capacity over all cuts in H(Xe). Then with probability
≥ 1−O(1/nd), we have every cut in G(Xe) has capacity within 1± ε̃ factor of its expectation, for
ε̃ =

√
2(d+ 2)(M/c̃) lnn.

Example: Given a graph G and a desired accuracy ε, we can set p = 2(d+2) lnn
ĉε2

, and let Xe = 1/p
with probability p, and Xe = 0 (i.e., non-edge) otherwise. This way, the expected capacity of

2



a cut is just its capacity in G, in particular c̃ = ĉ. Applying this theorem with M = 1/p, we
get approximation ε̃ =

√
2(d+ 2)(M/ĉ) lnn ≈ ε, as desired. In fact, this is just the graph from

previous theorem scaled by factor 1/p.

Exer: Prove this theorem (similarly to the previous one).

The downside of the above result is that the number of edges might not decrease at all. For instance,
if the initial graph is two cliques connected by a single edge, we actually need to “sample down”
each clique separately (perhaps at different rates, if they have different sizes), but not the entire
graph at the same rate.

We now aim to overcome this.

Theorem 5 [Benczur-Karger, 1996]: For every weighted graph G = (V,E) on n vertices and
error parameter ε > 0, there is a weighted subgraph G′ = (V,E′) with O(ε−2n log n) edges such
that G′ ∈ (1± ε)G. Moreover, G′ can be constructed in O(|E| log2 n) time.

Remark: The number of edges was later improved to |E′| ≤ O(ε−2n) by [Batson-Spielman-
Srivastava, 2009], even deterministically (and even for spectral sparsifier) but not in near-linear
time computation. There is a recent matching lower bound Ω(ε−2n) by [Andoni-Krauthgamer-
Woodruff].

Here: We will prove a slightly weaker version, for unweighted graphs, with another log2 n factor,
and without the near-linear time algorithm.

Example: Consider the following cut problem. The input is a graph G = (V,E) with k vertices
t1, . . . , tk ∈ V , and the goal is to find a minimum capacity F ⊆ E whose removal disconnects ti
from tj for all i ̸= j.

Exer: Does a (1 + ε) cut sparsifier G′ of G approximately preserve also the optimum for this
problem?

Remark: Recall that by definition, the capacity of every cut (S, S̄) is approximately the same in
G and in G′. But the optimum F in the above problem might disconnect G into more than two
connected components (you might want to show such G).

Main idea: Sample edges non-uniformly, each edge e with probability pe that is inversely propor-
tional to its “connectivity” ce. So “dense” regions will be sampled with smaller probability, thereby
reducing the number of edges there more aggresively.

Definitions of Connectivity:

A graph is k-connected if every cut in it has capacity ≥ k.

A k-strong component is a maximal vertex-induced subgraph that is k-connected.

Example: Consider r cliques, connected by a cycle.

Exer: Prove there is a unique partitioning of the vertices into k-strong components. (Hint: If V1

and V2 are k-connected and have non-empty intersection, then also V1 ∪ V2 is k-connected.)

It follows that the k-strong components partition the vertices of the graph. They can be obtained
by removing (simultaneously) all cuts of capacity < k. Clearly, the (k + 1)-strong components is a

3



refinement of that partition. Indeed, start at k = 1 with the whole graph being 1-strong (assuming
it is connected and unweighted); now gradually increase k, say to k = 2, “apply” cuts of value < k
(if any) to break the graph into 2-strong components, and so forth. In our example, each clique is
2-strong (but also 3-strong etc.).

The strong connectivity of an edge e ∈ E, denoted ce, is the maximum value k such that it is
contained in a k-strong component. An edge is called k-strong if its strong connectivity is at least
k; otherwise k-weak.

Note that strong connectivity differs from the usual definition of edge-connectivity. (Example: n
parallel paths between s, t.)

Construction of sparsifier G′:

Set q = qε := 4(d+2)ε−2 lnn, and sample every e ∈ E with probability pe = min{q/ce, 1}, in which
case it is given weight 1/pe.

Lemma 6: With probability ≥ 1−O(1/nd), the resulting graph G′ has O(qn) edges.

Idea of Proof: The idea is that “regions” with with high connectivity will have many edges and
vice versa, so these things balance out. We saw in class shows that

E[
∣∣E(G′)

∣∣] = ∑
e∈E

pe ≤ q
∑
e∈E

(1/ce).

The high-probability bound then follows by a Chernoff bound.

Exer: Complete the high-probability bound using Chernoff.

Lemma 7: With high probability, G′ ∈ (1± ε log |E|)G.

Note that Lemmas 6,7 together indeed prove (a weaker version of) Theorem 5, by simply using a
smaller value ε′ = ε/ log |E|.

Idea of Proof: The proof seen in class uses uniform sampling (Theorem 4). The idea is to
describe the same algorithm in a different way, as if we divide the sampling process into phases,
and phase i = 0, 1, . . . flips the coins only for edges e with 2i ≤ ce < 2i+1. The analysis then applies
Theorem 6 separately on each 2i-strong component, which means that we basically “remove” edges
with ce < 2i. Inside each such component, the edges from level i are chosen at random, but all
edges with ce ≥ 2i+1 are kept (deterministically).

As seen in class, decompose G into edge-disjoint graphs Gi for i = 0, 1, . . ., where e ∈ Gi if
2i ≤ ce < 2i+1. For sake of analysis, at each phase i we actually consider the graph G≥i = ∪j≥iGj ;
notice it consists (exactly) of all 2i-strong components.

At phase i, we sample edges of G≥i as follows:

X(i)
e =

{
1/pe w.p. pe, and 0 otherwise if e ∈ Gi;

1 otherwise (i.e. e ∈ G≥i+1)

Recall that pe = min{q/ce, 1}. (Edges of levels lower than i are not touched or considered at all.)

4



For each 2i-strong component H, we apply Theorem 4 to H(X
(i)
e ), and obtain that WHP

H(X(i)
e ) ∈ (1±

√
2(d+ 2)(2/q) lnn)H = (1± ε)H.

(If M = 1 then q
ce

≥ q
2i+1 > 1, hence pe = 1 and surely H(X

(i)
e ) = H, which is even stronger.) By

a union bound over the disjoint 2i-strong components H, WHP G≥i(X
(i)
e ) ∈ (1± ε)G≥i.

Finally, we consider the entire graph G, incurring an error of ε at each level i (notice all 1 ≤ ce ≤
|E|):

G′ =

log |E|∑
i=0

Gi(X
(i)
e ) =

∑
i

(
G≥i(X

(i)
e )−G≥i+1

)
∈
∑
i

(
(1± ε)G≥i −G≥i+1

)
=

∑
i

(
(1± ε)Gi + (1± ε− 1)G≥i+1

)
∈ (1± ε log |E|)G.

Exer: It is sometimes easier/faster to compute an approximation to ce. So suppose we use in pe
an approximation to ce, say within factor 3, i.e., values c′e ∈ [ce, 3ce]. Explain how the theorem and
analysis shown in class would extend.

Extensions and open problems:

Hypergraphs: The analysis above can be extended to hypergraphs, giving an upper bound of O(n2)
[Kogan-Krauthgamer]. The lower bound we know is Ω(n), so there is a gap. (In fact, there are also
other ways to “extend” the definition from graphs to hypergraphs.)

Uncut: Can we sparsify G and maintain (for every cut) the number of uncut edges? This problem
is equivalent to a system of Boolean linear equations xi ⊕ xj = 0.

2-SAT: Can we sparsify a 2-SAT formula to Õ(n) clauses, such that the value under every truth
assignment is maintained within approximation factor 1± ε?

High-probability answers: Consider a weaker requirement, for a graph G′ such that for every cut
(S, S̄), with high probability

capG′(S, S̄) ∈ (1± ε) capG(S, S̄).

Notice the difference that here “for each cut, with high probability ...” rather than “with a high
probability, for all cuts ...” (called “for each” instead of “for all” in compressive sensing literature).
Is it possible to obtain G′ with Õ(n/ε) edges? A positive evidence (but not a graph G′) is given
by [Andoni-Krauthgamer-Woodruff].

5


