Randomized Algorithms 2015A Lecture 7 – Data streams and the AMS algorithm for ℓ_2 -norm^{*}

Robert Krauthgamer

1 Data streams and the AMS algorithm for ℓ_2 -norm

Data stream model:

Motivation: We receive a stream of m items, each in the range [n], and we let x_i be the frequency of item i. Then F_2 -frequency moment is just $||x||_2^2$. Upon seeing an item $i \in [n]$, we update $x_i \leftarrow x_i+1$. In the simplest model, we allow any increment a > 0. A more general one allows any $a \in \mathbb{R}$, but assumes $x_i \ge 0$. The most general one allows any $x_i \in \mathbb{R}$.

ℓ_p -norm problem:

Input: a vector $x \in \mathbb{R}^n$, given as a stream (sequence) of m updates of the form (i, a), meaning $x_i \leftarrow x_i + a$.

Assumption: updates a are integral and $|x_i| \leq \text{poly}(n)$.

Goal: estimate its ℓ_p -norm $||x||_p$. We focus on p = 2.

Note: could have a < 0 (deletions) and maybe even $x_i < 0$.

Linear sketch (summarization): We shall use a randomized function $L : \mathbb{R}^n \to \mathbb{R}^s$ for small s. The algorithm will only maintain Lx, which is easy to update since:

 $L(x + ae_i) = Lx + a(Le_i).$

Of course, one has to "construct" L that somehow "stores" $||x||_2$.

The memory requirement depends on: dimension s, accuracy needed for each coordinate, and resources (randomness) to compute Le_i .

Note: L is essentially an $s \times n$ (real) matrix.

Theorem 1 [Alon-Matthias-Szegedy'96]: One can estimate the ℓ_2 norm within factor $1 + \varepsilon$ using a linear sketch of $s = O(\varepsilon^{-2})$ memory words. [with high constant probability]

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Remark: We will later discuss how to limit the randomness (because bits that were generated need to be stored).

Algorithm A:

- 1. Choose initially r_1, \ldots, r_n independently and uniformly at random from $\{-1, +1\}$.
- 2. Maintain $Z = \sum_{i} r_i x_i$ (a linear sketch, hence can be updated as above).
- 3. Output: Z^2 .

Analysis of expectation: As seen in class, $\mathbb{E}[Z^2] = ||x||_2^2$.

We aren't done yet since we want to get $1 + \varepsilon$ accuracy...

Analysis of second moment:

As seen in class, $\operatorname{Var}(Z^2) \leq 2\mathbb{E}[Z^2]$. This is not small enough, but we can repeat several times and take their average.

Algorithm B: Execute $t = O(1/\varepsilon^2)$ independent copies of Algorithm A, denoting their estimates by Y_1, \ldots, Y_t , and output their mean $\tilde{Y} = \sum_i Y_j/t$.

Observe that the sketch (Y_1, \ldots, Y_t) is still linear.

Analysis: Clearly, $\mathbb{E}[\tilde{Y}] = \mathbb{E}[Y_1] = \mathbb{E}[Z^2].$

By independence of the t executions,

$$\operatorname{Var}(\tilde{Y}) \le \frac{1}{t} \cdot 2(\mathbb{E}[Z^2])^2,$$

and by Chebychev's inequality,

$$\Pr[|\tilde{Y} - \mathbb{E}\tilde{Y}| \ge \varepsilon \mathbb{E}\tilde{Y}] \le \frac{3}{t\varepsilon^2}.$$

Choosing appropriate $t = O(1/\varepsilon^2)$ makes the probability of error an arbitrarily small constant.

Space requirement: $t = O(1/\varepsilon^2)$ words (for constant success probability), without counting memory used to represent/store L.

Concern: How do we store the *n* values r_1, \ldots, r_n ?

Exer: For what value of k would the basic analysis work assuming that r_1, \ldots, r_n are k-wise independent?

Exer: What would happen (to accuracy analysis) if the r_i 's were chosen as standard gaussians N(0, 1)?

Further work studied other ℓ_p -norms and lower bounds.

High probability bound:

Lemma: Let B be a randomized algorithm to approximate some function f(x), i.e.,

$$\forall x, \quad \Pr[B(x) \in (1 \pm \varepsilon) f(x)] \ge 2/3.$$

Then algorithm C which outputs the median of $O(\log \frac{1}{\delta})$ times independent executions of B satisifies

$$\forall x, \quad \Pr[C(x) \in (1 \pm \varepsilon) f(x)] \ge 1 - \delta.$$

Exer: prove this lemma. (Hint: Use the Chernoff-Hoeffding bound.)

Remark: Notice that we obtained a $1 + \varepsilon$ estimate for $||x||_2^2$, but this immediately gives also a $1 + \varepsilon$ estimate for $||x||_2$.

2 Count-min sketch for ℓ_1 point queries

ℓ_p point query problem:

Goal: at the end of the stream, given query *i*, report, for a parameter $\alpha \in (0, 1)$,

$$\tilde{x}_i = x_i \pm \alpha \|x\|_p$$

Observe: $||x||_1 \ge ||x||_2 \ge \ldots \ge ||x||_{\infty}$, hence higher norms (larger p) gives better accuracy. We will see an algorithm for ℓ_1 , which is the easiest.

Exer: Show that the ℓ_1 and ℓ_2 norms differ by at most a factor of \sqrt{n} , and that this is tight. Do the same for ℓ_2 and ℓ_{∞} .

It is not difficult to see ℓ_{∞} is hard. For instance, with $\alpha = 1/2$ we could recover a binary vector $x \in \{0,1\}^n$, which (at least intuitively) requires $\Omega(n)$ bits to store.

Theorem 2 [Cormode-Muthukrishnan'05]: One can answer ℓ_1 point queries within error α with probability $1 - 1/n^2$ using a linear sketch of $O(\alpha^{-1} \log n)$ memory words.

Algorithm *D*: (We assume for now $x_i \ge 0$ for all *i*.)

1. Set $w = 2/\alpha$ and choose a random hash function $h: [n] \to [w]$.

2. Maintain a table $Z = [Z_1, \ldots, Z_w]$ such that $Z_j = \sum_{i:h(i)=j} x_i$.

3. When asked to estimate x_i , return $\tilde{x}_i = Z_{h(i)}$.

Analysis (correctness): As seen in class, $\tilde{x}_i \ge x_i$ holds always, and using Markov's inequality, $\Pr[\tilde{x}_i - x_i \ge \alpha ||x||_1] \le 1/2.$

Algorithm E: Execute $t = O(\log n)$ independent copies of algorithm D, i.e., maintain vectors Z^1, \ldots, Z^t and functions h^1, \ldots, h^t . Output the estimator $\hat{x}_i = \min_l Z^l_{h^l(i)}$.

Analysis (correctness): Setting $t = O(\log n)$ we have

 $\Pr[|\hat{x}_i - x_i| \ge \alpha ||x||_1] \le (1/2)^t = 1/n^2.$

Space requirement: $O(\alpha^{-1} \log n)$ words (for success probability $1 - 1/n^2$), without counting memory used to represent/store the hash functions.

Exer: Extend the algorithm to general x. (Hint: replace the min operator by median.)

3 Heavy hitters via point queries

Heavy hitters set: For parameter $\phi \in [0, 1]$, define $HH^p_{\phi}(x) = \{i : |x_i|^p \ge \phi ||x||_p^p\}$. Observe that the number of HH is bounded by $1/\phi$.

ℓ_p heavy hitters problem:

Parameters: $\phi \ge \varepsilon \ge 0$.

Goal: return a set $S \subseteq [n]$ such that

$$HH^p_{\phi} \subseteq S \subseteq HH^p_{\phi-\varepsilon}.$$

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ_1 point queries with parameter $\alpha = \varepsilon/2$. Amplify the error probability to 1/3n (if needed).

Then we compute for every $i \in [n]$ an estimate \tilde{x}_i (this step takes time $O(n \log n)$ or even more) and report the set $S = \{i : \tilde{x}_i \ge \phi - \varepsilon/2\}$.

Analysis: With probability $\geq 2/3$, all the *n* estimates are correct within additive $\varepsilon/2$. In this case, *S* contains all the ϕ -HH, and is contained in the $(\phi - \varepsilon)$ -HH.