
Randomized Algorithms 2015A

Lecture 7 – Data streams and the AMS algorithm for ℓ2-norm
∗

Robert Krauthgamer

1 Data streams and the AMS algorithm for ℓ2-norm

Data stream model:

Motivation: We receive a stream of m items, each in the range [n], and we let xi be the frequency of
item i. Then F2-frequency moment is just ∥x∥22. Upon seeing an item i ∈ [n], we update xi ← xi+1.
In the simplest model, we allow any increment a > 0. A more general one allows any a ∈ R, but
assumes xi ≥ 0. The most general one allows any xi ∈ R.

ℓp-norm problem:

Input: a vector x ∈ Rn, given as a stream (sequence) of m updates of the form (i, a), meaning
xi ← xi + a.

Assumption: updates a are integral and |xi| ≤ poly(n).

Goal: estimate its ℓp-norm ∥x∥p. We focus on p = 2.

Note: could have a < 0 (deletions) and maybe even xi < 0.

Linear sketch (summarization): We shall use a randomized function L : Rn → Rs for small s.
The algorithm will only maintain Lx, which is easy to update since:

L(x+ aei) = Lx+ a(Lei).

Of course, one has to “construct” L that somehow “stores” ∥x∥2.

The memory requirement depends on: dimension s, accuracy needed for each coordinate, and
resources (randomness) to compute Lei.

Note: L is essentially an s× n (real) matrix.

Theorem 1 [Alon-Matthias-Szegedy’96]: One can estimate the ℓ2 norm within factor 1 + ε
using a linear sketch of s = O(ε−2) memory words. [with high constant probability]

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Remark: We will later discuss how to limit the randomness (because bits that were generated need
to be stored).

Algorithm A:

1. Choose initially r1, . . . , rn independently and uniformly at random from {−1,+1}.

2. Maintain Z =
∑

i rixi (a linear sketch, hence can be updated as above).

3. Output: Z2.

Analysis of expectation: As seen in class, E[Z2] = ∥x∥22.

We aren’t done yet since we want to get 1 + ε accuracy...

Analysis of second moment:

As seen in class, Var(Z2) ≤ 2E[Z2]. This is not small enough, but we can repeat several times and
take their average.

Algorithm B: Execute t = O(1/ε2) independent copies of Algorithm A, denoting their estimates
by Y1, . . . , Yt, and output their mean Ỹ =

∑
j Yj/t.

Observe that the sketch (Y1, . . . , Yt) is still linear.

Analysis: Clearly, E[Ỹ] = E[Y1] = E[Z2].

By independence of the t executions,

Var(Ỹ) ≤ 1

t
· 2(E[Z2])2,

and by Chebychev’s inequality,

Pr[|Ỹ − EỸ | ≥ εEỸ] ≤ 3
tε2

.

Choosing appropriate t = O(1/ε2) makes the probability of error an arbitrarily small constant.

Space requirement: t = O(1/ε2) words (for constant success probability), without counting
memory used to represent/store L.

Concern: How do we store the n values r1, . . . , rn?

Exer: For what value of k would the basic analysis work assuming that r1, . . . , rn are k-wise
independent?

Exer: What would happen (to accuracy analysis) if the ri’s were chosen as standard gaussians
N(0, 1)?

Further work studied other ℓp-norms and lower bounds.

High probability bound:

Lemma: Let B be a randomized algorithm to approximate some function f(x), i.e.,

∀x, Pr[B(x) ∈ (1± ε)f(x)] ≥ 2/3.

2

Then algorithm C which outputs the median of O(log 1
δ) times independent executions of B satisifies

∀x, Pr[C(x) ∈ (1± ε)f(x)] ≥ 1− δ.

Exer: prove this lemma. (Hint: Use the Chernoff-Hoeffding bound.)

Remark: Notice that we obtained a 1+ ε estimate for ∥x∥22, but this immediately gives also a 1+ ε
estimate for ∥x∥2.

2 Count-min sketch for ℓ1 point queries

ℓp point query problem:

Goal: at the end of the stream, given query i, report, for a parameter α ∈ (0, 1),

x̃i = xi ± α∥x∥p.

Observe: ∥x∥1 ≥ ∥x∥2 ≥ . . . ≥ ∥x∥∞, hence higher norms (larger p) gives better accuracy. We will
see an algorithm for ℓ1, which is the easiest.

Exer: Show that the ℓ1 and ℓ2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for ℓ2 and ℓ∞.

It is not difficult to see ℓ∞ is hard. For instance, with α = 1/2 we could recover a binary vector
x ∈ {0, 1}n, which (at least intuitively) requires Ω(n) bits to store.

Theorem 2 [Cormode-Muthukrishnan’05]: One can answer ℓ1 point queries within error α
with probability 1− 1/n2 using a linear sketch of O(α−1 log n) memory words.

Algorithm D: (We assume for now xi ≥ 0 for all i.)

1. Set w = 2/α and choose a random hash function h : [n]→ [w].

2. Maintain a table Z = [Z1, . . . , Zw] such that Zj =
∑

i:h(i)=j xi.

3. When asked to estimate xi, return x̃i = Zh(i).

Analysis (correctness): As seen in class, x̃i ≥ xi holds always, and using Markov’s inequality,
Pr[x̃i − xi ≥ α∥x∥1] ≤ 1/2.

Algorithm E: Execute t = O(log n) independent copies of algorithm D, i.e., maintain vectors
Z1, . . . , Zt and functions h1, . . . , ht. Output the estimator x̂i = minl Z

l
hl(i)

.

Analysis (correctness): Setting t = O(log n) we have

Pr[|x̂i − xi| ≥ α∥x∥1] ≤ (1/2)t = 1/n2.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

Exer: Extend the algorithm to general x. (Hint: replace the min operator by median.)

3

3 Heavy hitters via point queries

Heavy hitters set: For parameter ϕ ∈ [0, 1], define HHp
ϕ(x) = {i : |xi|

p ≥ ϕ∥x∥pp}.

Observe that the number of HH is bounded by 1/ϕ.

ℓp heavy hitters problem:

Parameters: ϕ ≥ ε ≥ 0.

Goal: return a set S ⊆ [n] such that

HHp
ϕ ⊆ S ⊆ HHp

ϕ−ε.

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ1 point queries with parameter α = ε/2. Amplify the error
probability to 1/3n (if needed).

Then we compute for every i ∈ [n] an estimate x̃i (this step takes time O(n log n) or even more)
and report the set S = {i : x̃i ≥ ϕ− ε/2}.

Analysis: With probability ≥ 2/3, all the n estimates are correct within additive ε/2. In this case,
S contains all the ϕ-HH, and is contained in the (ϕ− ε)-HH.

4

