Randomized Algorithms 2015A
Lecture 9 — Dimension Reduction in £y, Sketching, and NNS in £1*

Robert Krauthgamer

1 Dimension Reduction in ¢,

The Johnson-Lindenstrauss (JL) Lemma: Let zy,...,2, € R? and fix ¢ > 0. Then there
exist y1,...,yn € R*, k= O(¢72logn), such that

vi,jenl, lyi =yl € (L+e)llz —aj].

Moreover, there is a randomized linear mapping L : R? — R* (oblivious to the given points), such
that if we define y; = Lz;, then with probability at least 1 — 1/n all the above inequalities hold.

Remark: Note there is no assumption on the input points (e.g., that they lie on a low-dimensonal
space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussian. In fact,
random signs +1 would also work!

Since L is linear, Lx; — Lz; = L(x; — x;), and it suffices to verify that L preserves the norm of any
vector (instead of looking at pairs of vectors).

Main Lemma: Let G : R™* be a random matrix of standard gaussians, for suitable k =
O(e2logn).

v eR!, Pr||Gu] e is)\/Ean] >1—92/n?,

We saw in class how the theorem’s proof using the Main Lemma, and also how to prove the latter
using the following fact and claim.

Fact (Gaussians are 2-stable): Let X3,..., X, be independent standard Gaussian N (0, 1), and
let 01,...,0, € R. Then > . 0;X; ~ N(0,, 02).

Claim: Let Y have chi-squared distribution with parameter k, i.e., Y = Ele X? for independent
Xl, e ,Xk ~ N(O, 1). Then

Ve € (0, 1)7 PI"[Y > (1 + 8)2k‘] < 6_(3/4)52’“.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

Remark: This claim and its proof are similar to Chernoff bounds.

2 Sketching

What is Sketching: We have some input x, which we want to “compress” into a sketch s(x)
(much smaller), but want to be able to later compute some f(z) only from the sketch. Often,
randomization helps. We’ll denote it as s,(z) where r is the sequence of random coins.

Examples:
1. Sketching = € R™ so that later we could estimate any z; (point queries).

2. Sketching for equality testing by hashing and testing whether h(z) = h(y), using a hash function
h:{0,1}" — {0,1}¢, for instance a random function or as in the exercise below (an inner product
(z,r) in GF[2]). It’s important here to choose h using public randomness, i.e., same h for both

Z,Y.

Exer: Analyze the hash function h,(x) = > ;| x;7; (mod 2), where ¥ € {0,1}" is random, offers a
good sketch for equality testing in the sense that

Ve#y, Prih(z) = h(y)]=1/2.

3. Sketching for ¢, distance, namely, for all z,y € [n]",

Pria(sy(2),sr(y)) = (1 £ &)z —yl,] = 2/3.
We implemented such s for /o norm using a linear sketch L : [n]” — ZF for k = O(1/€?), hence
|s(z)] < O(e~2logn) bits.

Question: Can we use (for 1 or £3) only O(e~2) bits? No if we want an estimate. But maybe for
a decision version (output is YES/NO)?

Theorem 1 [Estimating ¢; distance]: For all 0 < ¢ < 1 there is a randomized sketching
algorithm (simulatenous protocol) that can estimate the ¢; (or Hamming) distance between vectors
within factor 1+ ¢ in the decision version (i.e., given any parameter R > 0, it can decide whether
|z —y| is < R or > (1 = ¢)R) with sketch size O(1/?).

The sketching algorithm seen in class had two steps, the first chooses I C [n] to subsample the
coordinates with rate 1/R, and the second applies to zy,y; the equality testing mentioned earlier
(inner-product in GF[2]).

Review of key points:

1. Design a single-bit sketch with small “advantage”

2. Amplify success probability using Chernoff bounds

3 NNS under ¢; norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points z1,...,z, € R? so that then,
given a query point ¢ € R?%, we can quickly find the closest data point to the query, i.e. report ;
that minimizes ||¢ — ;1.

Performance measure: Preprocessing (time and space) and query time.

Two naive solutions: exhaustive search with query time O(n), and preparing all answer in advance
with preprocessing space 27 (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in
n.

Approximate version (factor ¢ > 1): find x; such that ||¢ — z;||1 < ¢ min; ||g — x;|;.

Theorem 2 [Indyk-Motwani’98, Kushilevitz-Ostrosvky-Rabani’98]: For every e > 0 there
is a randomized algorithm for 14& approximate NNS in Z¢ under ¢;-norm with preprocessing space
nC1/e%) . O(d) and query time O(c2d polylogn).

Remark 1: We shall omit/neglect the precise polynomial dependence on d.
Remark 2: The success probability is for a single query (assuming it’s independent of the coins).

Remark 3: We only need to solve the decision version i.e. there is a target distance R > 0, and if
there is data point x; such that ||g—x;||1 < R then we need to find point z; such that ||¢g—x;|[1 < cR.
If no point is within distance cR, then report NONE. Otherwise, can report either answer. This
follows by preparing in advance for all powers of 1+ ¢ as the value of R (then trying all of them or
binary search).

Remark 4: WLOG x; and ¢ are in {0, 1}4.

Main idea: We basically repeat the single-bit sketching algorithm from Theorem 1 k = O(¢~2logn)
times to reduce the error probability to 1/n?, apply it to each z;. We compute at query time
5(q) € {0,1}*, but prepare “in advance” an answer for every possible value of (¢), using a table
of size 2F.

