
Randomized Algorithms 2015A

Lecture 9 – Dimension Reduction in ℓ2, Sketching, and NNS in ℓ1
∗

Robert Krauthgamer

1 Dimension Reduction in ℓ2

The Johnson-Lindenstrauss (JL) Lemma: Let x1, . . . , xn ∈ Rd and fix ε > 0. Then there
exist y1, . . . , yn ∈ Rk, k = O(ε−2 log n), such that

∀i, j ∈ [n], ∥yi − yj∥ ∈ (1± ε)∥xi − xj∥.

Moreover, there is a randomized linear mapping L : Rd → Rk (oblivious to the given points), such
that if we define yi = Lxi, then with probability at least 1− 1/n all the above inequalities hold.

Remark: Note there is no assumption on the input points (e.g., that they lie on a low-dimensonal
space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussian. In fact,
random signs ±1 would also work!

Since L is linear, Lxi −Lxj = L(xi − xj), and it suffices to verify that L preserves the norm of any
vector (instead of looking at pairs of vectors).

Main Lemma: Let G : Rd×k be a random matrix of standard gaussians, for suitable k =
O(ε−2 log n).

∀v ∈ Rd, Pr
[
∥Gv∥ ∈ (1± ε)

√
k∥v∥

]
≥ 1− 2/n3.

We saw in class how the theorem’s proof using the Main Lemma, and also how to prove the latter
using the following fact and claim.

Fact (Gaussians are 2-stable): Let X1, . . . , Xn be independent standard Gaussian N(0, 1), and
let σ1, . . . , σn ∈ R. Then

∑
i σiXi ∼ N(0,

∑
i σ

2
i).

Claim: Let Y have chi-squared distribution with parameter k, i.e., Y =
∑k

i=1X
2
i for independent

X1, . . . , Xk ∼ N(0, 1). Then

∀ε ∈ (0, 1), Pr[Y > (1 + ε)2k] ≤ e−(3/4)ε2k.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Remark: This claim and its proof are similar to Chernoff bounds.

2 Sketching

What is Sketching: We have some input x, which we want to “compress” into a sketch s(x)
(much smaller), but want to be able to later compute some f(x) only from the sketch. Often,
randomization helps. We’ll denote it as sr(x) where r is the sequence of random coins.

Examples:

1. Sketching x ∈ Rn so that later we could estimate any xi (point queries).

2. Sketching for equality testing by hashing and testing whether h(x) = h(y), using a hash function
h : {0, 1}n → {0, 1}t, for instance a random function or as in the exercise below (an inner product
⟨x, r⟩ in GF [2]). It’s important here to choose h using public randomness, i.e., same h for both
x, y.

Exer: Analyze the hash function hr(x) =
∑n

i=1 xiri (mod 2), where r⃗ ∈ {0, 1}n is random, offers a
good sketch for equality testing in the sense that

∀x ̸= y, Pr
r
[hr(x) = h(y)] = 1/2.

3. Sketching for ℓp distance, namely, for all x, y ∈ [n]n,

Pr[a(sr(x), sr(y)) = (1± ε)∥x− y∥p] ≥ 2/3.

We implemented such s for ℓ2 norm using a linear sketch L : [n]n 7→ Zk for k = O(1/ε2), hence
|s(x)| ≤ O(ε−2 log n) bits.

Question: Can we use (for ℓ1 or ℓ2) only O(ε−2) bits? No if we want an estimate. But maybe for
a decision version (output is YES/NO)?

Theorem 1 [Estimating ℓ1 distance]: For all 0 < ε < 1 there is a randomized sketching
algorithm (simulatenous protocol) that can estimate the ℓ1 (or Hamming) distance between vectors
within factor 1 + ε in the decision version (i.e., given any parameter R > 0, it can decide whether
∥x− y∥ is ≤ R or > (1 = ε)R) with sketch size O(1/ε2).

The sketching algorithm seen in class had two steps, the first chooses I ⊂ [n] to subsample the
coordinates with rate 1/R, and the second applies to xI , yI the equality testing mentioned earlier
(inner-product in GF [2]).

Review of key points:

1. Design a single-bit sketch with small “advantage”

2. Amplify success probability using Chernoff bounds

2

3 NNS under ℓ1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points x1, . . . , xn ∈ Rd, so that then,
given a query point q ∈ Rd, we can quickly find the closest data point to the query, i.e. report xi
that minimizes ∥q − xi∥1.

Performance measure: Preprocessing (time and space) and query time.

Two naive solutions: exhaustive search with query time O(n), and preparing all answer in advance
with preprocessing space 2d (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in
n.

Approximate version (factor c ≥ 1): find xj such that ∥q − xj∥1 ≤ c ·mini ∥q − xi∥1.

Theorem 2 [Indyk-Motwani’98, Kushilevitz-Ostrosvky-Rabani’98]: For every ε > 0 there
is a randomized algorithm for 1+ε approximate NNS in Zd under ℓ1-norm with preprocessing space
nO(1/ε2) ·O(d) and query time O(ε−2d polylog n).

Remark 1: We shall omit/neglect the precise polynomial dependence on d.

Remark 2: The success probability is for a single query (assuming it’s independent of the coins).

Remark 3: We only need to solve the decision version i.e. there is a target distance R > 0, and if
there is data point xj such that ∥q−xj∥1 ≤ R then we need to find point xi such that ∥q−xi∥1 ≤ cR.
If no point is within distance cR, then report NONE. Otherwise, can report either answer. This
follows by preparing in advance for all powers of 1+ ε as the value of R (then trying all of them or
binary search).

Remark 4: WLOG xi and q are in {0, 1}d.

Main idea: We basically repeat the single-bit sketching algorithm from Theorem 1 k = O(ε−2 log n)
times to reduce the error probability to 1/n2, apply it to each xi. We compute at query time
s̃(q) ∈ {0, 1}k, but prepare “in advance” an answer for every possible value of s̃(q), using a table
of size 2k.

3

