Randomized Algorithms 2015A Lecture 9 – Dimension Reduction in ℓ_2 , Sketching, and NNS in ℓ_1^*

Robert Krauthgamer

1 Dimension Reduction in ℓ_2

The Johnson-Lindenstrauss (JL) Lemma: Let $x_1, \ldots, x_n \in \mathbb{R}^d$ and fix $\varepsilon > 0$. Then there exist $y_1, \ldots, y_n \in \mathbb{R}^k$, $k = O(\varepsilon^{-2} \log n)$, such that

 $\forall i, j \in [n], \qquad \|y_i - y_j\| \in (1 \pm \varepsilon) \|x_i - x_j\|.$

Moreover, there is a randomized linear mapping $L : \mathbb{R}^d \to \mathbb{R}^k$ (oblivious to the given points), such that if we define $y_i = Lx_i$, then with probability at least 1 - 1/n all the above inequalities hold.

Remark: Note there is no assumption on the input points (e.g., that they lie on a low-dimensional space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussian. In fact, random signs ± 1 would also work!

Since L is linear, $Lx_i - Lx_j = L(x_i - x_j)$, and it suffices to verify that L preserves the norm of any vector (instead of looking at pairs of vectors).

Main Lemma: Let $G : \mathbb{R}^{d \times k}$ be a random matrix of standard gaussians, for suitable $k = O(\varepsilon^{-2} \log n)$.

$$\forall v \in \mathbb{R}^d$$
, $\Pr\left[\|Gv\| \in (1 \pm \varepsilon)\sqrt{k}\|v\|\right] \ge 1 - 2/n^3$.

We saw in class how the theorem's proof using the Main Lemma, and also how to prove the latter using the following fact and claim.

Fact (Gaussians are 2-stable): Let X_1, \ldots, X_n be independent standard Gaussian N(0, 1), and let $\sigma_1, \ldots, \sigma_n \in \mathbb{R}$. Then $\sum_i \sigma_i X_i \sim N(0, \sum_i \sigma_i^2)$.

Claim: Let Y have chi-squared distribution with parameter k, i.e., $Y = \sum_{i=1}^{k} X_i^2$ for independent $X_1, \ldots, X_k \sim N(0, 1)$. Then

 $\forall \varepsilon \in (0,1), \qquad \Pr[Y > (1+\varepsilon)^2 k] \le e^{-(3/4)\varepsilon^2 k}.$

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Remark: This claim and its proof are similar to Chernoff bounds.

2 Sketching

What is Sketching: We have some input x, which we want to "compress" into a *sketch* s(x) (much smaller), but want to be able to later compute some f(x) only from the sketch. Often, randomization helps. We'll denote it as $s_r(x)$ where r is the sequence of random coins.

Examples:

1. Sketching $x \in \mathbb{R}^n$ so that later we could estimate any x_i (point queries).

2. Sketching for equality testing by hashing and testing whether h(x) = h(y), using a hash function $h : \{0, 1\}^n \to \{0, 1\}^t$, for instance a random function or as in the exercise below (an inner product $\langle x, r \rangle$ in GF[2]). It's important here to choose h using public randomness, i.e., same h for both x, y.

Exer: Analyze the hash function $h_r(x) = \sum_{i=1}^n x_i r_i \pmod{2}$, where $\vec{r} \in \{0,1\}^n$ is random, offers a good sketch for equality testing in the sense that

$$\forall x \neq y, \qquad \Pr[h_r(x) = h(y)] = 1/2.$$

3. Sketching for ℓ_p distance, namely, for all $x, y \in [n]^n$,

$$\Pr[a(s_r(x), s_r(y)) = (1 \pm \varepsilon) ||x - y||_p] \ge 2/3.$$

We implemented such s for ℓ_2 norm using a linear sketch $L : [n]^n \to \mathbb{Z}^k$ for $k = O(1/\varepsilon^2)$, hence $|s(x)| \leq O(\varepsilon^{-2} \log n)$ bits.

Question: Can we use (for ℓ_1 or ℓ_2) only $O(\varepsilon^{-2})$ bits? No if we want an estimate. But maybe for a decision version (output is YES/NO)?

Theorem 1 [Estimating ℓ_1 distance]: For all $0 < \varepsilon < 1$ there is a randomized sketching algorithm (simulatenous protocol) that can estimate the ℓ_1 (or Hamming) distance between vectors within factor $1 + \varepsilon$ in the decision version (i.e., given any parameter R > 0, it can decide whether ||x - y|| is $\leq R$ or $> (1 = \varepsilon)R$) with sketch size $O(1/\varepsilon^2)$.

The sketching algorithm seen in class had two steps, the first chooses $I \subset [n]$ to subsample the coordinates with rate 1/R, and the second applies to x_I, y_I the equality testing mentioned earlier (inner-product in GF[2]).

Review of key points:

- 1. Design a single-bit sketch with small "advantage"
- 2. Amplify success probability using Chernoff bounds

3 NNS under ℓ_1 norm (logarithmic query time)

Problem definition (NNS): Preprocess a dataset of n points $x_1, \ldots, x_n \in \mathbb{R}^d$, so that then, given a query point $q \in \mathbb{R}^d$, we can quickly find the closest data point to the query, i.e. report x_i that minimizes $||q - x_i||_1$.

Performance measure: Preprocessing (time and space) and query time.

Two naive solutions: exhaustive search with query time O(n), and preparing all answer in advance with preprocessing space 2^d (at least).

Challenge: being polynomial in dimension d, but still getting query time sublinear (or polylog) in n.

Approximate version (factor $c \ge 1$): find x_j such that $||q - x_j||_1 \le c \cdot \min_i ||q - x_i||_1$.

Theorem 2 [Indyk-Motwani'98, Kushilevitz-Ostrosvky-Rabani'98]: For every $\varepsilon > 0$ there is a randomized algorithm for $1 + \varepsilon$ approximate NNS in \mathbb{Z}^d under ℓ_1 -norm with preprocessing space $n^{O(1/\varepsilon^2)} \cdot O(d)$ and query time $O(\varepsilon^{-2}d \operatorname{polylog} n)$.

Remark 1: We shall $\operatorname{omit/neglect}$ the precise polynomial dependence on d.

Remark 2: The success probability is for a single query (assuming it's independent of the coins).

Remark 3: We only need to solve the decision version i.e. there is a target distance R > 0, and if there is data point x_j such that $||q-x_j||_1 \leq R$ then we need to find point x_i such that $||q-x_i||_1 \leq cR$. If no point is within distance cR, then report NONE. Otherwise, can report either answer. This follows by preparing in advance for all powers of $1 + \varepsilon$ as the value of R (then trying all of them or binary search).

Remark 4: WLOG x_i and q are in $\{0, 1\}^d$.

Main idea: We basically repeat the single-bit sketching algorithm from Theorem 1 $k = O(\varepsilon^{-2} \log n)$ times to reduce the error probability to $1/n^2$, apply it to each x_i . We compute at query time $\tilde{s}(q) \in \{0,1\}^k$, but prepare "in advance" an answer for every possible value of $\tilde{s}(q)$, using a table of size 2^k .