Sublinear Time and Space Algorithms 2016B — Lecture 2
Distinct Elements, Point Queries and Hash Functions®

Robert Krauthgamer

1 Distinct Elements

Problem Definition: Let 2 € R™ be the frequency vector of the input stream, and let ||z|jo =
|{i € [n] : ; > 0}| be the number of distinct elements in the stream. It’s also called the Fy-moment
of 0.

Naive algorithms: Storage O(n) (a bit for each possible item) or O(mlogn) (list of seen items)
bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function h : [n] — [0, 1] where each h(7) has an independent uniform distri-
bution on [0, 1]. (This is an “idealized” description, because even though we can generate n truly
random bits, we cannot store and re-use them.)

Idea: We will have exactly d* = ||z||o distinct hashes, and since they are random, by symmetry
their minimum should be at 1/(d" +1).

1. Init: z2=1
2. When item i € [n] is seen, update z = min{z, h(7)}
3. Output: 1/z—1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues
later.

Denote by d* := ||zo the true value, and let Z denote the final value of z (to emphasize it is a
random variable).

Lemma 1: E[Z] =1/(d" +1).
Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: Formally, we use a trick to avoid the integral calculation (which is actually straightfor-

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

ward). Choose an additional random value X uniformly from [0, 1] (for sake of analysis only), then
by the law of total expectation

E[Z] = B[Px(X < 7 | 7)) = E[E[L{x<z) | 7)) = E[L(x<z) = 1/(d" +1).

Lemma 2: E[Z?%] = m and thus Var[Z] < (E[Z]).

Exer: Prove this lemma using the above trick with two new random values (and/or prove both
by calculating the integral).

Algorithm FM+-:

1. Run k = O(1/€?) independent copies of algorithm FM, keeping in memory Zi,...,Z; (and
functions k', ..., h¥)

2. Output: 1/Z — 1 where Z = %Zle Z;

As before, averaging reduces the standard deviation by factor vk, and then by Chebyshev’s in-
equality, WHP Z € d"+0(d" /Vk) =d" +ed".

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues
later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store
a (1 + e)-approximation of z, which can reduce the number of bits from O(logn) (in a “typical”
implementation of the real-valued hashes) to O(loglogn). A particularly efficient 2-approximation
is to store the number of zeros in the beginning of 2’s binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom £ [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:
Idea: Use only one hash function, and store the k smallest values seen.
1. Init: 2= =2z.=1

2. When item i € [n] is seen, update z; < --- < 2 to be the k smallest distinct values among
{Zl, <oy Rk h(l)}

3. Output: X :=k/z

Storage requirement: Again, O(k) words (not including randomness); we will discuss implementa-
tion issues later.

Remark: Notice the output will not make sense if k > d*, because zj, will maintain its initial value
of 1. Figure out where this is needed in the analysis.

Lemma 3: For suitable k = O(1/¢2),

Pr[X > (1+¢)d"] <0.05,
Pr[X < (1 —¢)d"] < 0.05.

Thus, X € (1+¢) d" with probability > 90%.
ﬁ, which means that at

least k hashes are smaller than some threshold, while each of the d” distinct hashes seen meets this

threshold independently with probability ﬁ, hence we expect only ﬁ hashes to meet the

threshold. If we set & > 1/£2, then the standard deviation is Vk < ek, and we can use Chebyshev’s
inequality.

Intuition: The event X = k/z, > (1 +¢)d” is equivalent to z, <

Exer: Prove the above lemma.

3 (¢, Point Query via CountMin

Problem Definition: Let x € R™ be the frequency vector of the input stream, and let ||z||, =
(3,|z:[P)Y/P be its £,-norm. Let « € (0,1) and p > 0 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i € [n], report Z;
such that WHP
T; € x; Oé”.’L'Hp

Observe: ||z|[1 > ||z|l2 > ... > |||lco, hence higher norms (larger p) give better accuracy. We will
see an algorithm for ¢;, which is the easiest.

Exer: Show that the ¢; and /5 norms differ by at most a factor of y/n, and that this is tight. Do
the same for /5 and /.

It is not difficult to see that o, point query is hard. For instance, with a = 1/2 we could recover
an arbitrary binary vector x € {0, 1}", which (at least intuitively) requires €(n) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ¢; point
queries that uses a (linear) sketch of O(a~!logn) memory words to achieve accuracy a with success
probability 1 — 1/n?.

We will initially assume all x; > 0.

Algorithm CountMin:

(Assume all z; > 0.)

1. Init: Set w = 4/a and choose a random hash function A : [n] — [w].

2. Update: Maintain table/vector S = [S1,...,S,] where Sj =3, ;) @i

3. Output: To estimate z; return &; = Sp(;).

The update step can indeed be implemented in a streaming fashion: When item ¢ arrives, we need
to update = < x+¢;. This update is easy because the sketch is a linear map S : R" — R" (observe
that Sj = Zl]l{h(i):j}xi)a and thus S(IL’ + 6,‘) = S(LI?) + S(el)

We call S a sketch to emphasize it is a succinct version of the input.
Analysis (correctness): We saw in class that Z; > x; and Pr[z; > x; + «of|z|1] < 1/4.
Algorithm CountMin+:

1. Run t = logn independent copies of algorithm CountMin, keeping in memory the vectors
St ..., 8" (and functions h',...,ht)

2. Output: the minimum of all estimates &; = min, S]lll 0
Analysis (correctness): As before, Z; > z; and
Prli; > x; + al|z|1] < (1/4)" = 1/n2.
By a union bound, with probability at least 1—1/n, for all i € [n] we will have z; < Z; < z;+a|z1.

Space requirement: O(a~!'logn) words (for success probability 1 — 1/n?), without counting
memory used to represent/store the hash functions.

General z (allowing negative entries):

Algorithm CountMin actually extends to general z that might be negative, and achieves the guar-
antee

Pr[z; € z; £ af|z|1] < 1/4.

Exer: complete the proof.
But now to amplify the success probability, we use median instead of minimum.

Chernoff-Hoeffding concentration bounds: Let X =)’
are independently distributed random variables. Then

ie[n) Xi where X; € [0,1] for i € [n]

vVt >0, Pr|X — E[X]| > t] < 22/,
Vo <e <1, PriX < (1-e)E[X]]<e —eQEX]/z
Vo <e <1, PrX > (1+e)E[X]]<e —e2E[X]/3
Vvt > 2 E[X], PriX > <2t

Algorithm CountMin++:

1. Run £ = O(logn) independent copies of algorithm CountMin, keeping in memory the vectors
St ..., S* (and functions h', ..., h¥)

2. Output: To estimate z; report the median of all basic estimates z; = medlan{Shl(% € [k]}
Exer: Prove that

Pr[#; € z; & al|z|)1] < 1/n%

Hint: Define an indicator Y; for the event that copy j € [k] succeeds, then use one of the concen-
tration bounds.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements and for Probabilistic Counting (say from constant to 1 — 1/n2).

Hint: use independent repetitions + median.

4 Hash Functions

Recall that two (discrete) random variables X, Y are independent if
Y,y PriX =z,Y =y| =Pr[X =z - Pr[Y =y].

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. In particular, it implies E[XY] = E[X] - E[Y].

Pairwise independent random variables: A collection of random variables Xi,..., X, is
called pairwise independent if for all ¢ # j € [n], the variables X; and X; are independent.

Example: Let X,Y € {0,1} be random and independent bits, and let Z = X @Y. Then X,Y, 7
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1,..., X, are pairwise independent, the variance Var()_, X;) is exactly the
same as if they were fully independent, because

Var(z Xi) = E[(Z Xi)? - (E[Z Xi])? = ZE[Xin] - (Z E[Xi))*.

A different way to see it, is via the following well-known (and easy) fact: If X1,..., X,, are pairwise
independent (and have finite variance), then Var(}_, X;) = >, Var(X;).

Pairwise independent hash family: A family H of hash functions h : [n] — [M] is called
pairwise independent if for all i # j € [n],

Yoy Prih(i) = k() = y] = Prh() = 2] Prih() = o).

A common scenario is that each h(i) is uniformly distributed over [M].

Universal hashing: A family H of hash functions h : [n] — [M] is called 2-universal if for all
i#j€nl,

Vo Prih(i) =, h(j) =y) < 1/M.

Observe that 2-universality is a weaker requirement that pairwise independence, but it suffices for
many algorithms.

Construction of pairwise independent hashing:

Assume M > n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p,q € {0,1,2,..., M — 1} = [M] and set accordingly h, (i) = pi + ¢ (mod M).

The family H = {h, 4 : p, q} is pairwise independent because for all i # j and all z, y,

Pribi) =ah() =9l =Pr[(GH () = (D] =Pr [= (D7 ()] =

where we relied on the above matrix being invertible.

Storing a function h,, from this family can be done by storing p,q, which requires log|H| =
O(log M) bits. In general, log|H| bits suffice to store an index of h € H.

Exer: Show that the correctness of algorithm CountMin (for ¢; point query) extends to using a
universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm Bottom k& (for Distinct Elements) can be extended
to using a pairwise independent hash function h : [n] — [n?] (instead of continuous range [0,1]),
and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form {h(i) < threshold}, and relied on independence for
every pair h(i), h(j).

