
Sublinear Time and Space Algorithms 2016B – Lecture 2

Distinct Elements, Point Queries and Hash Functions∗

Robert Krauthgamer

1 Distinct Elements

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ∥x∥0 =
|{i ∈ [n] : xi > 0}| be the number of distinct elements in the stream. It’s also called the F0-moment
of σ.

Naive algorithms: Storage O(n) (a bit for each possible item) or O(m log n) (list of seen items)
bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function h : [n] → [0, 1] where each h(i) has an independent uniform distri-
bution on [0, 1]. (This is an “idealized” description, because even though we can generate n truly
random bits, we cannot store and re-use them.)

Idea: We will have exactly d* = ∥x∥0 distinct hashes, and since they are random, by symmetry
their minimum should be at 1/(d*+1).

1. Init: z = 1

2. When item i ∈ [n] is seen, update z = min{z, h(i)}

3. Output: 1/z − 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues
later.

Denote by d* := ∥x∥0 the true value, and let Z denote the final value of z (to emphasize it is a
random variable).

Lemma 1: E[Z] = 1/(d*+1).

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: Formally, we use a trick to avoid the integral calculation (which is actually straightfor-

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

ward). Choose an additional random value X uniformly from [0, 1] (for sake of analysis only), then
by the law of total expectation

E[Z] = E
Z
[Pr
X
[X < Z | Z]] = E

Z
[E
X
[1{X<Z} | Z]] = E[1{X<Z}] = 1/(d*+1).

Lemma 2: E[Z2] = 2
(d+1)(d+2) and thus Var[Z] ≤ (E[Z])2.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both
by calculating the integral).

Algorithm FM+:

1. Run k = O(1/ε2) independent copies of algorithm FM, keeping in memory Z1, . . . , Zk (and
functions h1, . . . , hk)

2. Output: 1/Z̄ − 1 where Z̄ = 1
k

∑k
i=1 Zi

As before, averaging reduces the standard deviation by factor
√
k, and then by Chebyshev’s in-

equality, WHP Z̄ ∈ d*±O(d* /
√
k) = d*±εd*.

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues
later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store
a (1 + ε)-approximation of z, which can reduce the number of bits from O(log n) (in a “typical”
implementation of the real-valued hashes) to O(log log n). A particularly efficient 2-approximation
is to store the number of zeros in the beginning of z′s binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

1. Init: z1 = · · · = zk = 1

2. When item i ∈ [n] is seen, update z1 < · · · < zk to be the k smallest distinct values among
{z1, . . . , zk, h(i)}

3. Output: X := k/zk

Storage requirement: Again, O(k) words (not including randomness); we will discuss implementa-
tion issues later.

Remark: Notice the output will not make sense if k > d*, because zk will maintain its initial value
of 1. Figure out where this is needed in the analysis.

2

Lemma 3: For suitable k = O(1/ε2),

Pr[X > (1 + ε) d*] ≤ 0.05,

Pr[X < (1− ε) d*] ≤ 0.05.

Thus, X ∈ (1± ε) d* with probability ≥ 90%.

Intuition: The event X = k/zk > (1 + ε) d* is equivalent to zk < k
(1+ε) d*

, which means that at

least k hashes are smaller than some threshold, while each of the d* distinct hashes seen meets this
threshold independently with probability k

(1+ε) d*
, hence we expect only k

1+ε hashes to meet the

threshold. If we set k ≥ 1/ε2, then the standard deviation is
√
k ≤ εk, and we can use Chebyshev’s

inequality.

Exer: Prove the above lemma.

3 ℓ1 Point Query via CountMin

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ∥x∥p =
(
∑

i|xi|p)1/p be its ℓp-norm. Let α ∈ (0, 1) and p > 0 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i ∈ [n], report x̃i
such that WHP

x̃i ∈ xi ± α∥x∥p.

Observe: ∥x∥1 ≥ ∥x∥2 ≥ . . . ≥ ∥x∥∞, hence higher norms (larger p) give better accuracy. We will
see an algorithm for ℓ1, which is the easiest.

Exer: Show that the ℓ1 and ℓ2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for ℓ2 and ℓ∞.

It is not difficult to see that ℓ∞ point query is hard. For instance, with α = 1/2 we could recover
an arbitrary binary vector x ∈ {0, 1}n, which (at least intuitively) requires Ω(n) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ℓ1 point
queries that uses a (linear) sketch of O(α−1 log n) memory words to achieve accuracy α with success
probability 1− 1/n2.

We will initially assume all xi ≥ 0.

Algorithm CountMin:

(Assume all xi ≥ 0.)

1. Init: Set w = 4/α and choose a random hash function h : [n]→ [w].

2. Update: Maintain table/vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j xi.

3. Output: To estimate xi return x̃i = Sh(i).

3

The update step can indeed be implemented in a streaming fashion: When item i arrives, we need
to update x← x+ei. This update is easy because the sketch is a linear map S : Rn → Rw (observe
that Sj =

∑
i 1{h(i)=j}xi), and thus S(x+ ei) = S(x) + S(ei).

We call S a sketch to emphasize it is a succinct version of the input.

Analysis (correctness): We saw in class that x̃i ≥ xi and Pr[x̃i ≥ xi + α∥x∥1] ≤ 1/4.

Algorithm CountMin+:

1. Run t = log n independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , St (and functions h1, . . . , ht)

2. Output: the minimum of all estimates x̂i = minl S
l
hl(i)

Analysis (correctness): As before, x̂i ≥ xi and

Pr[x̂i > xi + α∥x∥1] ≤ (1/4)t = 1/n2.

By a union bound, with probability at least 1−1/n, for all i ∈ [n] we will have xi ≤ x̂i ≤ xi+α∥x∥1.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

General x (allowing negative entries):

Algorithm CountMin actually extends to general x that might be negative, and achieves the guar-
antee

Pr[x̃i ∈ xi ± α∥x∥1] ≤ 1/4.

Exer: complete the proof.

But now to amplify the success probability, we use median instead of minimum.

Chernoff-Hoeffding concentration bounds: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n]
are independently distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Algorithm CountMin++:

1. Run k = O(log n) independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: To estimate xi report the median of all basic estimates x̂i = median{Sl
hl(i)

: l ∈ [k]}

Exer: Prove that

Pr[x̂i ∈ xi ± α∥x∥1] ≤ 1/n2.

4

Hint: Define an indicator Yj for the event that copy j ∈ [k] succeeds, then use one of the concen-
tration bounds.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements and for Probabilistic Counting (say from constant to 1− 1/n2).

Hint: use independent repetitions + median.

4 Hash Functions

Recall that two (discrete) random variables X,Y are independent if

∀x, y Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. In particular, it implies E[XY] = E[X] · E[Y].

Pairwise independent random variables: A collection of random variables X1, . . . , Xn is
called pairwise independent if for all i ̸= j ∈ [n], the variables Xi and Xj are independent.

Example: Let X,Y ∈ {0, 1} be random and independent bits, and let Z = X ⊕ Y . Then X,Y, Z
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1, . . . , Xn are pairwise independent, the variance Var(
∑

iXi) is exactly the
same as if they were fully independent, because

Var(
∑
i

Xi) = E[(
∑
i

Xi)
2]− (E[

∑
i

Xi])
2 =

∑
i,j

E[XiXj]− (
∑
i

E[Xi])
2.

A different way to see it, is via the following well-known (and easy) fact: If X1, . . . , Xn are pairwise
independent (and have finite variance), then Var(

∑
iXi) =

∑
iVar(Xi).

Pairwise independent hash family: A family H of hash functions h : [n] → [M] is called
pairwise independent if for all i ̸= j ∈ [n],

∀x, y Pr
h∈H

[h(i) = x, h(j) = y] = Pr[h(i) = x] Pr[h(j) = y].

A common scenario is that each h(i) is uniformly distributed over [M].

Universal hashing: A family H of hash functions h : [n] → [M] is called 2-universal if for all
i ̸= j ∈ [n],

∀x, y Pr
h∈H

[h(i) = x, h(j) = y] ≤ 1/M.

Observe that 2-universality is a weaker requirement that pairwise independence, but it suffices for
many algorithms.

Construction of pairwise independent hashing:

5

Assume M ≥ n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p, q ∈ {0, 1, 2, . . . ,M − 1} = [M] and set accordingly hp,q(i) = pi+ q (mod M).

The family H = {hp,q : p, q} is pairwise independent because for all i ̸= j and all x, y,

Pr
h∈H

[h(i) ≡ x, h(j) ≡ y] = Pr
p,q

[(
i 1
j 1

)
(pq) ≡ (xy)

]
= Pr

p,q

[
(pq) ≡

(
i 1
j 1

)−1
(xy)

]
= 1

M2 ,

where we relied on the above matrix being invertible.

Storing a function hp,q from this family can be done by storing p, q, which requires log |H| =
O(logM) bits. In general, log |H| bits suffice to store an index of h ∈ H.

Exer: Show that the correctness of algorithm CountMin (for ℓ1 point query) extends to using a
universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm Bottom k (for Distinct Elements) can be extended
to using a pairwise independent hash function h : [n] → [n3] (instead of continuous range [0, 1]),
and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form {h(i) < threshold}, and relied on independence for
every pair h(i), h(j).

6

