
Sublinear Time and Space Algorithms 2016B – Lecture 4

Precision Sampling and High Frequency Moments∗

Robert Krauthgamer

1 Precision Sampling

Sum Estimation: Suppose the input is a1, . . . , an ∈ [0, 1], and we want to estimate its sum
S =

∑
i ai using only a “partial reading” of the ai’s.

The Subsampling Model: Read only a random subset J ⊂ [n] of size |J | = m, and output
S̃ = n

m

∑
j∈J aj .

We analyze instead sampling elements from [n] with replacement, i.e., J is a multiset. Then
E[S̃] = S and

Var(S̃) ≤ n2

m2

∑
j∈J

1 =
n2

m
.

(In fact, this is just like averaging of m copies of a basic estimator, which samples one element and
scales it by n, with standard deviation n.) By Chebyshev’s inequality Pr[S̃ ∈ S ± 2n/

√
m] ≥ 3/4.

For example, to achieve additive error O(1) we need m = Ω(n).

Exer: Prove similar bounds for subsampling m elements without replacement, and also for
subampling each element independently with probability m/n.

Exer: Show that Ω(n) samples are really needed, even if we allow both additive error 10 and
multiplicative error 1.1.

Hint: Consider S with O(1) nonzeros.

The “Precision” Model: The algorithm gets “noisy readings” âi for every ai. The algorithm
chooses in advance (non-adaptively) some precisions ui and then it is guaranteed additive approx-
imation |âi − ai| ≤ ui. The algorithm’s cost is the “total precision” 1

n

∑
i

1
ui
.

Comparison with subsampling explains the scaling by 1
n : no information about item i means ui = 1

and costs 1
nui

= 1/n ≈ 0, and nearly-full information means ui = 1/n and costs 1
n · n = 1.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Idea: Choose the ui’s at random (iid).

Precision Sampling Lemma [Andoni, Krauthgamer and Onak, 2011]:

Fix an integer n ≥ 2, and consider iid u1, . . . , un ∼ Exp(1) (called precisions). Then for every
a1, . . . , an ∈ [0, 1], and estimates â1, . . . , ân ∈ [0, 1] that satisfy |âi − ai| ≤ ui, the estimator
Ŝ = maxi âi/ui satisfies

Pr
ui

[
1
4S − 1 ≤ Ŝ ≤ 4S + 1

]
≥ 3/4.

Moreover, with high probability, the PSL estimator has total cost O(log n).

Remarks: Exp(1) is the continuous distribution with pdf e−x on (0,∞). Intuition: its discrete
analogue is the geometric distribution; indeed, both are memoryless.

Proof: Was seen in class, using the fact that the exponential distribution is min-stable.

Exer: Can you improve the multiplicative error to 1 + ε? How would it increase the estimator
cost? Can you guarantee additive error ε by changing the requirement from âi?

Hint: Use independent repetitions.

2 High Frequency Moments

Let x ∈ Rn be the frequency vector of the input stream.

Theorem [Indyk and Woodruff, 2005]: For every p ∈ (2,∞), one can estimate normxpp
within factor 1 + ε [with high constant probability] using a linear sketch of size (dimension) s =
O(n1−2/p(1ε log n)

O(1)). It implies a streaming algorithm using O(s logn) bits of storage.

We will see a different algorithm that relies on Precision Sampling, due to [Andoni, Krauthgamer
and Onak, 2011]. We will see in class a simplified version, due to Andoni, that achieves only O(1)
approximation, and omits discussion of randomness (how to replace full independence with limited
independence).

Algorithm PSLsketch:

1. Init: set w = O(n1−2/p logO(1) n) and pick a random hash function h : [n] → [w]

2. pick independent signs r1, . . . , rn ∈ {±1} and random u1, . . . , un ∼ Exp(1)

3. Update: maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi/u
1/p
i .

4. Output: to estimate ∥x∥pp report maxj∈[w]|Sj |p

The sketch S is linear, hence can be updated easily.

Storage requirement: O(w log n) bits, not counting storing the randomness.

Correctness:

To use the PSL, let ai = |xi|p, then
∑

i ai = ∥x∥pp, and let âi = |Sh(i)|p · ui.

2

If we show that WHP for every i ∈ [n],

| âiui
− ai

ui
| ≤ ε∥x∥pp,

then we can use the PSL (the range ai ∈ [0, 1] needs to be scaled by ∥x∥pp, which is equivalent to
dividing all ai’s by ∥x∥pp, but the algorithm need not know this quantity.)

The additive error is further scaled by factor ε, hence by the PSL, WHP the algorithm’s estimate
is

max
j∈[w]

|Sj |p = max
i

âi
ui

∈ max
i

ai
ui

± ε∥x∥pp ⊆ [1/4, 4]
∑
i

ai ± ε∥x∥pp = [1/4− ε, 4 + ε]∥x∥pp.

We saw in class the following weaker bound.

Lemma: For every i ∈ [n], WHP∣∣∣Sh(i) − rixi/u
1/p
i

∣∣∣p ≤ ε∥x∥pp.

Proof of lemma: Was seen in class. It uses the norm-comparison inequality ∥x∥2 ≤ n1/2−1/p∥x∥p,
which follows from Holder’s inequality.

Remark: Holder’s inequality actually asserts that for all p, q ∈ [1,∞] satisfying 1/p+ 1/q = 1,

∀a, b ∈ Rn, ⟨a, b⟩ ≤ ∥a∥p∥b∥q.

Notice that it generalizes the Cauchy-Schwartz inequality.

3

