Sublinear Time and Space Algorithms 2016B — Lecture 8
Lower Bounds via Communication Complexity*

Robert Krauthgamer

1 Communication Complexity

Model: Two parties, called Alice and Bob, receive inputs x,y respectively. They can exchange
messages, in rounds, until one of them (or both) reports an output f(z,y).

Main measure is communication complexity, i.e., total communication between the parties (in bits,
worst-case).

Variants of randomization: none (deterministic), shared/public, or private.

Number of rounds: zero (simultaneous, i.e., each sends a message to a referee and not directly to
each other), one (one-way communication), or more/unbounded.

Many other variants, like more players communicating in series (or broadcast etc.), with different
input model (e.g., number on forehead instead of number in hand).

Equality as an Example:

Problem definition: Alice and Bob’s inputs are z,y € {0,1}", and their goal is to compute
EQ(z,y) = To—y.

Public randomness: There is a (simultaneous) protocol with O(1) bits.
Private randomness: There is a (one-way) protocol with O(logn) bits.

Deterministic one-way: Every protocol requires €(n) communication bits.

2 Indexing

Problem definition: Alice has input x € {0,1}" and Bob has as input an index i € [n]. Their
goal is to output INDEX (z,1) = x;.
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This function would be easy if Bob could send his (short) input to Alice. But we shall consider
one-way communication from Alice to Bob, and her input is much longer.

Theorem 1 [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication
complexity of indexing is £2(n), even with shared randomness.

It’s therefore a “canonical” problem for reductions (in this model).

Proof by [Jayram, Kumar and Sivakumar, 2008]: Was seen in class (using an error cor-
recting code and some averaging arguments).

3 Streaming Lower Bounds: Exact /;

Theorem 2: Every streaming algorithm for computing ¢y exactly in R”, even a randomized one
with error probability 1/6, requires storage of €(n) bits.

Remark: This is true even for insertions-only streams.
Proof: Was seen in class, by reduction from the indexing problem.

Remark: Notice that our proof works even if random coins are not counted in the storage of the
streaming algorithm (because we rely on a communication lower bound with public coins).

Exer: Show a similar lower bound for exact /7.

Hint: You obviously must use a stream with deletions.

4 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob’s inputs are z,y € {0, 1}", respectively, and their goal is to
determine whether the hamming distance between z,y is < § —\/n or > & +/n.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is
Q(n), even with shared randomness.

Proof from [Jayram, Kumar and Sivakumar, 2008]: Was seen in class, by reduction from
the indexing problem.

We mention in passing a stronger result, where the number of rounds is unbounded.

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded
number of rounds) of GHD is 2(n), even with shared randomness.

5 Streaming Lower Bounds: Approximate ¢

Theorem 4: Every streaming algorithm that (1 4 €)-approximates ¢y in R™ for 2/y/n < e < 1,
even a randomized one with error probability 1/6, requires storage of Q(1/&2) bits.



Remark: For smaller 0 < & < 2/4/n, the required storage is (n), because any algorithm for such
“smaller” e “solves” e = 2/4/n which is covered by the above theorem.

Proof: Suppose there is a streaming algorithm ALG with space requirement s. Then we could
design the following one-way protocol for GHD on inputs z,y € {0,1}" for n/ = 1/¢2 < n/4. We
view x,y as vectors in bigger dimension n by appending them with zeros. Alice executes ALG on
a virtual stream = € R" send to Bob her memory contents together with ||x||o. Bob then continues
executing ALG on a virtual stream —y € R™, and computes (whp) an estimate F' € (1=£¢)||z—yllo,
i.c., estimates the hamming distance between z,y within additive error e|z —yl|jo < en’ = v/n/, and
uses it to solve GHD correctly.

The total communication used by this protocol is s. By Theorem 3, we have s = Q(n') = Q(1/£2).
Exer: Prove the same bound for insertions-only streams.
Hint: Observe that 2|z + y|lo = ||z]lo + ||y]lo + ||z — yl|o for all z,y € {0,1}".

Exer: Show a similar lower bound for (1 4 €)-approximation of ¢;-norm and ¢2-norm.



