Sublinear Time and Space Algorithms 2016B – Problem Set 1

Robert Krauthgamer

Due: April 17, 2016 (corrected version)

General instructions: Please keep your answers short and easy to read. You can use results, calculations or notation seen in class without repeating them, unless asked explicitly to redo them.

1. Let $x \in \mathbb{R}^n$ be the frequency vector of a stream of m items (insertions only).

Show how to use the CountMin+ sketch seen in class (for ℓ_1 point queries) to estimate the median item in the stream in the following sense: assuming there is $j^* \in [n]$ such that $\sum_{i=1}^{j^*} x_i = \frac{1}{2}m$, report an index $j \in [n]$ that with high probability satisfies $\sum_{i=1}^{j} x_i \in (\frac{1}{2} \pm \varepsilon)m$.

- 2. Give a complete analysis of algorithm CountMin++ seen in class, for ℓ_1 point query of a general frequency vector $x \in \mathbb{R}^n$ (i.e., allowing negative entries), as follows.
 - (a) Show for CountMin (the basic algorithm) that for every $i \in [n]$,

 $\Pr[|\tilde{x}_i - x_i| \ge \alpha \|x\|_1] \le 1/4.$

Explain whether it is okay to use a 2-universal or pairwise independent hash function.

(b) Show for algorithm CountMin++ (which runs $k = O(\log n)$ copies of CountMin and reports their median) that for every $i \in [n]$,

 $\Pr[|\hat{x}_i - x_i| \ge \alpha ||x||_1] \le 1/n^2.$

Hint: Define an indicator Y_l for the event that copy $l \in [k]$ succeeds, then use one of the concentration bounds.

- (c) Conclude by stating explicitly the storage required by this algorithm, including storage of hash functions.
- 3. Let A be a 0-1 matrix of size $(2^k 1) \times k$ whose rows A_i are exactly all the nonzero vectors in $\{0,1\}^k$. For a random $p \in \{0,1\}^k$, define $h_p : [2^k - 1] \to \{0,1\}$ by $h_p(i) := (Ap)_i = \langle A_i, p \rangle$, where all operations are performed modulo 2.

Prove that the family $H = \{h_p : p \in \{0,1\}^k\}$ is pairwise independent.

Conclude by stating explicitly the performance of this construction (number of bits needed to store $n = 2^k - 1$ pairwise independent random bits $h(1), \ldots, h(n)$).