
Randomized Algorithms 2016/7A

Lecture 1

Min Cut Algorithm, Closest Pairs, (Multi)-Set Equality
∗

Moni Naor

The lecture introduced randomized algorithms. Why are they interesting? They may solve problems
faster than deterministic ones, they may be essential in some settings, especially when we want
to go to the sublinear time complexity realm1, they are essential in distributed algorithms e.g. for
breaking symmetry, they yield construction of desirable objects that we do not know how to build
explicitly and are essential for cryptography2 and privacy3. Another type of study is to analyze
algorithms when assuming some distribution on the input, or some mixture of worst case and then
a perturbation of the input (known as smoothed analysis). But our emphasis would be worst case
data where the randomness is created independently of it. That is we assume the algorithm or
computing device in addition to the inputs gets also a random ‘tape’ (like the other tapes of the
Turing Machine, but this one with truly random symbols). One nice feature that some randomized
algorithms have is that they are simple. We demonstrated this in three algorithms in three different
scenarios.

Randomized algorithms existed for a long time, since the dawn of computing (for instance the
numerical “Monte Carlo Method”4 from the 1940’s or Shannon’s work [9], also from that time.

Later, when people started arguing rigorously about the running time of programs, the idea of
complexity classes of probabilistic machines emerged. We mentioned three such classes: RP ,
Co − RP and BPP . The common conjecture is that P = BPP and it is known to hold under
the assumption that there are sufficiently good pseudo-random generators, that is a function G :
{0, 1}∗ 7→ {0, 1}∗ that stretches its input significantly and the output cannot be distinguished from
random. The weakest assumption under which the latter exist is that E (the class of deterministic
2O(n)) has a problem with circuit complexity 2Ω(n) [4].

One of the proponents of the power of randomized algorithms in the 1970s was Michael Rabin
who published a very influential paper [7] on randomized algorithms. In that paper he gave a

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.

1For instance, the famed PCP Theorem, that states that every NP statement can be verified using a few queries
must use randomness for picking the queries. Another area is property testing.

2Where no task is possible without good randomness
3Differential privacy is a notion for sanitizing data that involves necessarily randomization, e.g. adding noise to

an aggregate of a population.
4Do not confuse with the term “Monte Carlo Algorithm” which is a general name for an algorithm whose running

time is deterministic (usually polynomial) but may err.

1

randomized algorithm for testing the primality of a number (based on Miller’s deterministic test
which assumed the ‘Extended Riemann Hypothesis’) that ran in polynomial time as well as a linear
expected time algorithm for finding the closest pair of points from a given set. The primality test
was (one directional) ‘Monte Carlo’ - it would always output ‘prime’ on a prime input and would
output ‘non-prime’ with high probability on a composite. Since then several randomized algorithms
for primality have been discovered as well as a deterministic one (see Schoof [8]). The fact that fast
algorithms for primality exist made the RSA cryptosystem (suggested not long after and based on
picking two random primes P and Q and making public their product N = P ·Q) feasible.

A simple example we mention was for checking matric multiplication: given three n × n matrices
A,B and C how do you check that A · B = C, say over the finite field GF [2]? To recompute the
product A · B is relatively expensive (the asymptotic time it takes is denoted as O(nω) where the
current (as of 2014) best value for ω is ≈ 2.3728639), but in 1977 Freivalds suggests and O(n2)
algorithm for verification: picking at random a vector r ∈ {0, 1}n and compute A(Br)) and Cr
and compare the two resulting vectors. If AB = C then the algorithms always says ’yes’ and if
A ·B 6= C then the algorithm says ‘no’ with probability at least 1/2.

This algorithm is a good example for the theory of program checking.

The Minimum Cut Problem

The algorithm we saw demonstrates simplicity in a spectacular way. No need for flows, just pick a
random edge and contract! The min-cut algorithm is due to Karger from SODA 1993. There is a
faster version with Stein where the repetition is done in a clever way (i.e. not starting from scratch
each time), yielding a near O(n2) algorithm [2]

Question: What happens if instead of picking a random edge you pick at random a pair of vertices
and contract? Is the resulting algorithm a good min-cut algorithm?

The analysis of the algorithm had the form of analyzing the probability of a bad event in set i of
the algorithm, given that a bad event had not occurred so far (the bad event was picking an edge
from the cut). IF that probability has an upper bound of Pi, then the probability of a bad event
ever occurring is bounded by Πn

i=1Pi.

Another important idea we discussed is amplification. Given an algorithm which has some small
probability of success, but running it many times, as a function of the probability, we can get a high
probability of success. In this case the basic algorithm had probability 1/n2 of finding the min-cut,
so after running it n2 time and taking the best (smallest cut) we have probability (1−1/n2)n

2 ≈ 1/e.
Repeating it a few more times gets us high probability of success.

Multiset equality

The problem we addressed can be viewed as a ‘streaming’ one. We have two multi-sets A and B
and they are given in an arbitrary order. Once an element is given it cannot be accessed again
(unless it is explicitly stored) and our goal is to have a low memory algorithm. We required a

2

family of functions H that was incremental in nature, in the sense that for a function h ∈ H:

• Given h, h(A) and an element x it is easy to compute h(A ∪ {x}).

• For any two different multi-sets A and B the probability over the choice of h ∈ H that
h(A) = h(B) is small.

• The description of h is short and the output of h is small.

The function we saw was based on treating the set A as defining a polynomial PA(x) = Πa∈A(x−a)
over a finite field whose size is larger than the universe from which the elements of A are chosen
(say a prime Q > |U |). The member of the family of functions is called hx for x ∈ GF [Q] and
defined as hx(A) = PA(x). The probability that two sets collide (i.e. hx(A) = hx(B), which in turn
means that PA(x) = PB(x)) is max{|A|, |B|}/Q, since this is the maximum number of points that
two polynomials whose degree is at most max{|A|, |B|} can agree without being identical.

Storing hx and storing h(A) as it is computed requires just O(logQ) bits, so the resulting algorithm
never needs to store anything close size to the original sets.

Closest Points in the Plane

Rabin’s closest pair algorithm was a Las Vegas type algorithm, i.e. it never outputs a wrong result
but the run time may take longer than expected. The algorithm we saw in class is much later and
is Due to Golin et al. [1]. The analysis was in expectation and was based on the probability that
we will need to rebuild the dictionary from the beginning, which was 2/i in the ith phase. There is
a good description of it in Kleinberg and Tardos’s book [3]. (you can read a description of Rabin’s
algorithm, which was also based on constructing a grid, in Lipton’s blog [5]). The algorithm uses
the floor (bxc) operation to find the square in the grid and hence does not fit the model used by
most algorithms studied in computational geometry.

To complete the algorithm we need a good hash table to store the non-vacant grid cells. Thus, the
algorithm yields yet another motivation for having dictionaries with O(1) per operation. How to
build the hash table will be discussed in future lectures.

Question: What happens if each time a new (potential) closest pair is discovered you pick at
random a new order of the remaining nodes (including the old ones) and insert them to the data
structure until a new closest point is discovered?

Nontransitive Dice

We saw (physical) dice that that are nontransitive (invented by Bradley Efron, see [6]): for two
dice A and B and consider the event the outcome of A is larger than that of B (that we assume
that the dice are fair in the sense that each side is equally likely and each side has a certain number
of dots (pips)). If the probability that this happens is more than half we say that A dominates
B. The point of the example is that even though if we look at the expectation as representing a

3

random variable, then the relation E[A] > E[B] is clearly transitive. But the domination relation
is not, as the following dice show:
A (purple): 4, 4, 4, 4, 0, 0
B (yellow): 3, 3, 3, 3, 3, 3
C (red): 6, 6, 2, 2, 2, 2
D (green): 5, 5, 5, 1, 1, 1
We have that A dominates B that dominates C that dominates D that dominates A. Also A
dominates C and B and D are equally likely to win. So here if the first player picks a die the
second player has a better die she can pick.

References

[1] Mordecai Golin, Rajeev Raman, Christian Schwarz and Michiel Smid, Randomized Data Struc-
tures For The Dynamic Closest-Pair Problem, SIAM J. Comput., vol. 26, no. 4, 1998.

[2] David Karger and Clifford Stein, A new approach to the minimum cut problem. Journal of the
ACM 43 (4): 601, 1996.

[3] Jon Kleinberg and Eva Tardos, Algorithm Design. Addison Wesley, 2006. The relevant chap-
ter: http://www.aw-bc.com/info/kleinberg/assets/downloads/ch13.pdf

[4] Russell Impagliazzo and Avi Wigderson, P = BPP if E Requires Exponential Circuits: Deran-
domizing the XOR Lemma, STOC 1997, pp. 220–229.

[5] Dick Lipton’s blog, “Rabin Flips a Coin”, March 2009
https://rjlipton.wordpress.com/2009/03/01/rabin-flips-a-coin/

[6] Ivars Peterson, Tricky Dice Revisited, Science News 2002.

[7] Michael Oser Rabin, Probabilistic algorithms. In Algorithms and complexity: New Directions
and Recent Results, pages 21-39. Academic Press, New York.

[8] Rene Schoof, Four primality testing algorithms, http://arxiv.org/abs/0801.3840

[9] Claude Shannon, A Mathematical Theory of Communication. Bell System Technical Journal 27
(3): 379-423, (July/October 1948).
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf

4

