
Randomized Algorithms 2016/7

Lecture 3

Ball and bins, Martingales, Concentration bounds and Bloom Filters
∗

Moni Naor

1 Simultaneous Message Model and Sketching

The simultaneous message model for evaluating a function f(x, y): Alice and Bob share a random
string. They receive inputs x and y respectively and each should send a message to a referee,
Charlie, who should evaluate the function f(x, y). They may also have their own private source of
randomness. The goal is for Alice and Bob to send short messages to Charlie.

For the equality function (as well as most interesting functions) we must have a probability of
error or else Alice and Bob send the full inputs. If the common random string encodes a pair-wise
independent hash function then we are in good shape.

Another view of this model is as sketching. Alice and Bob and any other participant publish a
sketch of their input that allows computing functions on it.

Question: what can be done in the Simultaneous Message Model when there is no public ran-
domness, specifically for the equality function? Answer, there is a O(

√
n) algorithm. Hint: think

of good error correcting code.

2 Martingales

We reviewed Martingales: that we are dealing with a sequence of random variables Z0, Z1, . . . , Zm
so that for all 0 ≤ i < m we have

E[Zi+1|Zi] = Zi (1)

The name ‘martingale’ comes from the betting world. The typical story is that Zi represents the
wealth after a sequence of fair bets where the winnings in the ith round are represented by Yi with
E[Yi] = 0.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

One issue that came up in the discussion is that in the literature one often sees the requirement
(1) phrased instead as

E[Zi+1|Zi, Zi−1, . . . , Z0] = Zi (2)

The question is whether these two requirements are equivalent and whether we can get the nice
concentration for both of them. They are not equivalent as the following example shows. Consider
a random walk on the integers with a reflecting wall at 0 where the first step chooses whether the
walk is in the non negative or non positive integers. That is Z0 = 0, the first step is random in
{−1, 1} and all subsequent steps are random in {−1, 1} if Zi 6= 0 and reflect to the previous step if
Zi = 0 (i.e. Zi+1 = Zi−1).

Now the sequence is not a martingale according to Definition (2), since given Zi, Zi−1, . . . , Z0, if
Zi = 0 then we know that Zi+1 = Zi−1. But Definition (1) holds, since given Zi = 0 we have no
idea whether we arrived from the positives or negatives.

Under both definitions we have Azuma’s inequality:

Theorem 1. Let c = Z0, Z1, . . . Zm be a martingale such that |Zi+1 − Zi| ≤ 1 for all 0 ≤ i < m.
Then

Pr[|Zm − c| > λ
√
m] < 2e−λ

2/2

The proof can be found in Alon Spencer [1].

A Doob Martingale is one obtained when Zi = E[f(W1,W2, . . .Wn)|W1,W2, . . . ,Wi] where the
Wi’s are random variables in some set A and f : An 7→ R. This is very convenient when trying to
show that the performance of an algorithm is close to its expected value with high probability. An
example we will discuss is the number of ‘0’s in a Bloom filter with truly random hash functions
and similarly throwing n balls into n bins at random, what can you say about the expected number
of vacant bins and how concentrated is this value around the expectation?

3 Bloom Filters

A Bloom filter is a data structure that represents a set S ⊆ U of size n approximately in the following
sense: for every x ∈ S it always answers ‘yes’ and for x 6∈ S it answers ‘yes’ with probability at
most ε. The probability is over the randomness used for generating the representation. Bloom
filters are named after Burton Bloom who suggested them in 1970 [3]. It is one the most useful
data structures (See the survey [4].

Representing a set precisely takes dlog
(
u
n

)
e bits at least, since this is log the number of different

subset of size n and also there exists a representation that uses this many bits. A good approxi-
mation for log

(
u
n

)
is n log(u/n) where we are loosing at most an O(n) additive factor which we can

get using the following:
(n/e)n < n! < e

√
n(n/e)n.

How much can we save by using an approximate representation? If the representation takes m
bits at most, then for any S there exists a representation W ∈ {0, 1}m with at most ε(u − n)

2

false positive (this true is since there is always a point that achieves at most the expected false
positive rate. To get from W an exact representation of S we need to store a set of size n out of
the false positives under W plus the ‘true’ positives, namely S, which can be done using at most
dlog

(
ε(u−n)+n

n

)
e bits. So we get that⌈

log

(
ε(u− n) + n

n

)⌉
+m ≥

⌈
log

(
u

n

)⌉
.

Therefore m has to be at least n log(1/ε)−O(n).

The ‘abstract’ construction we was to hash S to a range of size n/ε and then solve the exact dictio-
nary problem using an optimal number of bits (we did not talk how to achieve that constructively).
If the initial hash uses a pairwise independent function g then the probability of an element x 6∈ S
colliding with any element is S is bound by n · ε/n = ε. The number of bits required is thus —g—
(which is 2 log u plus n log(1/ε). So this result is very tight.

The original and common way of implementing Bloom filters is different and uses a {0, 1} vector.

4 Hash Tables

Hash tables is very well studied subject in computer science and one of the more useful practices.
Knuth’s “The Art of Computer Programming” Volume 3 devotes a lot of space to the various
possibilities and the origin of the idea is attributed to a 1956 paper by Arnold Dumey [7]. A major
issue is how to resolve collisions and popular suggestions are chaining and Open addressing (or
closed hashing). For the latter we need to specify a probing scheme and one of the more popular
ones is linear probing which takes advantage of the locality properties of computer memory (in the
various levels of hierarchy).

The ‘modern’ era of investigating hashing can be seen in the work of Carter and Wegman [5] who
suggested the idea of thinking of the input as being worst case and the performance is investigated
when the hash function is chosen at random from a predefined family (rather than assuming a truly
random function).

The simplest way to obtain dictionaries with expected O(1) per operation is to use chained hashing
with a table of size O(n). Here, it is enough to choose the hash function from a δ-universal family,
for δ which is O(1/n). The expected length of a chain is now O(1) and the length of the chain is
what determines the cost of an operation. Note however that there will be long chains. Universality
on its own only suffices to guarantee that the expected length of the longest chain is O(

√
(n)). The

upper bound follows from considering all potential collisions: there are
(
n
2

)
of them. Each collision

occurs with probability O(1/n), so the expected number of collisions is O(n). On the other hand,
in a chain of length ` there are

(
`
2

)
collisions. Therefore the expected length of the longest chain

cannot be larger than O(
√

(n)). For the lower bound see Alon et al. [2].

What happens if the hash function is truly random? Then this is the “ball and bins” scenario which
we will talk in the next lecture and here the heaviest bin/chain is likely to contain Θ(log n/ log log n)
elements.

Universality on its own also just guarantees expected O(1) performance and not, say, high probability

3

(1− 1/poly(n)) amortized O(1) performance. There are several ways to obtain this sort of result.
In future lectures we will explore ”Cuckoo Hashing” a method that uses two hash functions h1 and
h2 and where each element x in the set resides either in location h1(x) or location h2(x). This
means that lookup requires just two accesses to the memory. Insertion may be more involved and
requires relocating elements.

A lecture by Eric Demaine on hashing is available and recommended [6].

References

[1] Noga Alon, Joel H. Spencer, The Probabilistic Method, Wiley, 1992.

[2] Noga Alon, Martin Dietzfelbinger, Peter B. Miltersen, Erez Petrank, and
Gabor Tardos, Linear Hashing Journal of the ACM, Vol. 46(5), 1999.
http://www.brics.dk/RS/97/16/BRICS-RS-97-16.pdf

[3] Burton Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Errors, Communications
of the ACM 13:7 (1970), 422426.

[4] A Broder and M Mitzenmacher, Network Applications of Bloom Filters: A Survey, Internet
Mathematics, 2002

[5] J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. Syst. Sci. 18
(1979) 143–154.
http://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/universalclasses.pdf

[6] Eric Demaine, Lecture 10 in course 6.851: Advanced Data Structures (Spring’12) on Dictionar-
ies, https://courses.csail.mit.edu/6.851/spring12/lectures/L10.html

[7] Arnold Isaac Dumey, Indexing for rapid random-access memory, Computers and Automation 5
(12), 6–9, 1956.

4

