Randomized Algorithms 2017A - Lecture 10
Metric Embeddings into Random Trees

Lior Kamma

1 Introduction

Embeddings and Distortion. An embedding of a metric space (X,dy) into a metric
space (Y,dy) is a map f : X — Y. Its (bi-Lipschitz) distortion is the least D > 1 such
that

Vx,y € X. dX(x7y> < dy(f(l’),f(y)) <D- dx(ZL’,y) :

Some related results previously seen in class
Claim. Every n-point metric space embeds isometrically (i.e., with distortion 1) into (7.

Theorem (Bourgain 1985). Every n-point metric space embeds into o with distortion
O(logn).

Theorem (Johnson-Lindenstrauss). Every n-point metric subspace of (3 embeds into (5
with distortion (1 + €), where k = O(e~*logn).

Tree Metrics. Consider an undirected graph G = (V, E') with non-negative edge weights
{we}eEE-

Exercise: Show that the function dg : V x V' — R, which maps every pair z,y € V to
the length of a shortest path between z and y in G w.r.t. w, is a metric on V.

A metric space (Y, dy) is called a tree metric space if there exists a tree G such that YV
embeds isometrically into G.

“Dream Goal”: Embed an arbitrary metric space (X, dy) into a tree metric space with
“small” distortion.

Motivation. We first note that every finite tree metric space can be embedded isomet-
rically into ¢;.

Exercise: Prove it.

Additionally, many optimization and online problems involve a metric defined on a set
of points. It is often useful to embed a metric space into a simpler one while keeping
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the distances approximately. Specifically, many such problems can be efficiently solved or
better approximated on trees.

Bear the following example, called k-median, in mind. You are given a metric space
(X,dx) and an integer k. The goal is to choose a set S C X of size at most k, that
minimizes the objective function ) _ dx(z,S). This problem is known to be NP-Hard,
however it can be solved optimally on trees in polynomial time. The heuristic is as follows.
Embed X into a tree metric Y, solve the problem on Y, and construct a respective solution
in X.

Details are omitted at this point, mainly due to the fact that, unfortunately, this
approach does not work so well.

Embedding a Cycle into a Single Tree. Let (C,,dc,) denote the shortest-path metric
on an unweighted n-cycle. One can easily show show that embedding the cycle into a
spanning tree incurs a distortion D > €(n). In fact, Rabinovich and Raz [RR98] showed
that every embedding of the cycle into a tree (not necessarily a spanning tree, and may
have additional vertices) incurs distortion > Q(n).

2 Randomized Embeddings

However, not all is lost. If we consider a random embedding of C),, then we can bound
the distortion in expectation. Let T be the random tree that results from deleting a single
edge of (', chosen uniformly at random. Notice that this embedding satisfies the following
two properties (proved in class).

1. For every z,y € Cy,. do, (z,y) < dr(z,y).
2. For every z,y € C,,. Eldr(z,y)] < 2de, (z,y).

Exercise: Extend the result to a weighted cycle.

New Goal. Embed an arbitrary metric space (X,dy) into a random dominating tree
metric with “small” expected distortion.

In fact, we will show a somewhat stronger result.

Definition 1. A k-hierarchically well-separated tree (k-HST) is a rooted weighted tree
T = (V(T), E(T)) satisfying the following properties.

1. For every node v € V(T), all edges connecting v to a child are of equal weight.

2. The edge weight along a path from the root to a leaf decrease by a factor of at least
k.
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Theorem 1 ([FRT04]). Let (X,dx) be an n-point metric space. There exists a random-
ized polynomial-time algorithm that embeds X into the set of leaves of a 2-HST T =
(V(T), E(T)) such that the following holds (we may assume that X C V(T)).

1. For every xz,y € X. d(z,y) < dr(z,y).
2. For every x,y € X. Eldr(z,y)] < O(logn)dx(z,y).

Note that since the distortion is bounded in expectation, we can still apply the ap-
proximation heuristic considered earlier for problems in which the objective function is
linear.

Back to k-Median.

Lemma 1. The k-median problem can be solved efficiently on the metric space induced by
the set of leaves of a 2-HS'T.

Exercise: Prove Lemma 1. Hint: Use dynamic programming.

Corollary 1. There exists a randomized approximation algorithm for the k-median problem
with expected ratio O(logn).

proof sketch. Given a metric space (X,dx) and an integer k, we apply Theorem 1 and
randomly embed X into a 2-HST T'. We solve the problem on the leaves of T" and return
the solution. [

3 Partitions, Laminar Families and Trees.

Definition 2. A set-family £ C 2% is called laminar if for every A,B € L, if ANB # ()
then AC B or B C A.

A laminar family £ C 2% such that {} € £ for all z € X, induces a tree T such that
V(T) = L and the leaves of T are exactly {{z} : € X} in a straightforward manner.

We can construct a laminar family by repeatedly partitioning X. In order to make sure
the algorithm halts, we can, e.g. decrease the diameter of the sets in the partition in each
iteration. Let Il be a partition of X. Every A € Il is called a cluster, and for every z € X,
let TI(z) denote the unique cluster A € II such that x € S. Denote the diameter of X by
A. By scaling we may assume without loss of generality that min, yex dx(z,y) = 1.
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Input: X.
Output: A laminar family £ C 2% such that {{z} : 2 € X} C L.
1: Il + {X}, L+ {X}
2: for i =1 to log A do
3: II; <+ @
4: for all A €1Il,_; do
5 if |A| > 1 then
6 Let II be a partition of A into clusters of diameter at most 27*A.
7 II, « II, U IL.
8 L+ LUIL
9: return L.

Algorithm 1: Constructing a Laminar Family

It remains to show how to construct the partitions II;, i € [log A], and how to set the
weights of the tree edges.

4 From Low-Diameter Decompositions to Low-Distortion
Embeddings

Definition 3. A metric space (X,dx) is called 5-decomposable for § > 0 if for every
0 > 0 there is a probability distribution p over partitions of X, satisfying the following
properties.

(a). Diameter Bound: For every Il € supp(u) and A € 11, diam(A) < 4.

(b). Separation: For every x,y € X,

Pr [MI(z) £ TI(y) ] < - LY

II~p 0

Theorem 2 ([Bar96], [FRT04]). Every n-point metric space is 8log n-decomposable.

In fact, Fakcharoenphol, Rao and Talwar [FRT04]| gave a somewhat stronger result,
which will prove essential in the analysis of the embedding. We replace the separation
property in Definition 3 by the following, stronger requirement.

(b’). For every z,y € X, if dx(z,y) < 2 then

dx(z,y) |B{z,y},6/2)]
Pr[(x) #1(y) | < ——5—8log Bz, yb.0/8)

where B({z,y},r) ={z € X :dx({z,y},2) <r} for allr > 0.
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We can now update Algorithm 1 and construct the tree embedding.

Input: X.
Output: A 2-HST with X being the set of leaves.
1: Il « {X}
2: V(T) + Iy, E(T) «+ 0.
3: for i =1 to log A do
4. Hl < (Z)
for all A e1l,_; do
if |A| > 1 then
Let II be a random partition of A as in Theorem 2 with § = 27?A.
II; « II; UL
V(T) « V(T)UllL
10: Add to E(T) an edge from A to every cluster in II, of weight 4.
11: return 7.

Algorithm 2: Constructing a Random Embedding into a 2-HST

Applying Theorem 2, we now turn to prove Theorem 1. Note that the leaves of T are
exactly the sets {x} for all x € X, and thus for every x € X, we can identify {z} € V(T)
with z. Clearly T"is a 2-HST. Consider next z,y € X and let ig be the unique integer such
that dx(z,y) € (27°A,27@=DA] and let i* be the first index for which IT;(z) # i (y).
By the diameter bound of the partition we get that * < 75. We therefore conclude the
following.

Claim 1. dr(z,y) > dx(x,y).

Proof. dr(x,y) >2-270 > 270 A > dy(z,y). O
Claim 2. dy(z,y) <277 T2A.

Proof. Denote by u € V(T) the least common ancestor of x,y. Consider the path from u
to x. Since T is a 2-HST we get that the length of the path is at most

YA =2"HAL
The length of the xy-path in T" is at most twice as long. ]
The following claim concludes the proof of Theorem 1.
Corollary 2. Eldr(z,y)] < O(logn)dx(x,y).
Proof. Since 1 < i* < g, then E[dr(z,y)] = Yoo, Eldr(z,y)|i* =i] - Pr[i* =i]. By

. % . — % . dx (x, B({z,y}, —iA
Claim 2, E[dy(z,y)|i* = i] < 277"2A, and by Theorem 2, Pr[i* = i] < §_(i§) -log }B&Lﬁ;_%@l-

Therefore

O iop dx(ey) By} 2 1A)| o |B({r, g} 2 1a)
Eldr(z,y)] < ;2 #20 SE og Blle ] 270 4dX(x,y);1og BT AT
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All but a constant number of elements of the sum are canceled, and therefore E[dr(z,y)] <
O(logn)dx(z,y). O

5 Randomized Low-Diameter Decompositions
We now turn to prove Theorem 2. The following algorithm samples a partition of X. We

will show that the distribution induced by the algorithm satisfies the conditions of the
theorem.

Input: X, 4.
Output: A partition IT as in Theorem 2
I+ @
. let 7 be a random ordering of X.
independently choose R € (4/4,6/2] uniformly at random.
. for all j € [n] do
let B; = B(n(j), R).
let Cj = B; \U,.; By
if Cj # () then II + ITU {C}}.
return Il

O gk Wy

Algorithm 3: Constructing a Random Partition

Clearly for every C' € II, diam(C) < 0. Fix z,y € X, and let xq,x9,...,2, be an
ordering of X in ascending distance from {z,y} (breaking ties arbitrarily). Fix j € [n].
We say that z; settles z,y if B(z;, R) is the first ball (in the order induced by 7) that has
non-empty intersection with {x,y}. We say that x; cuts z,y if |B(z;, R) N{z,y}| =1, and
x; separates x,y if x; both settles z,y and cuts z,y.

Notice that the event that x; cuts z,y depends only on the choice of R and is indepen-
dent of the choice of m. Assume, without loss of generality that dx(j,z) < dx(j,y).

Claim 3. Prlz; separates x,y] < + - =25

Proof. First note that
Prlx; separates x,y| = Pr[z; separates z,y | x; cuts z,y| - Pr[z; cuts z,y] .

Note that x; cuts x, y if and only if R € [dx(j, x),dx(j,y)). Since R is uniformly distributed
over (6/4,0/2], and from the triangle inequality we get that

dx(j,y) —dx(j,x) _ 4dx(z,y)
574 =S5

Pr[z; cuts x,y| = Pr[R € [dx(j,2),dx(j,y)) ] <

Conditioned on z; cutting z,y, assume toward contradiction that there exists j* < j such
that x; precedes x; in the order induced by 7. Since dx(z;,{z,y}) < dx(z;, {z,y}) =
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dx(zj,z) < R, it follows that {z,y} N B(x;, R) # (0 and therefore x; does not settle z, y,
a contradiction. Therefore,

Pr[z; separates z,y | z; cuts x,y] < Pr[z; precedes xj for all j' < j] <

-

Since PrIl(z) # (y)] < 3¢, Prlz; separates z,y| we get that

Prll(z) # II(y)] < Z 4de(5x’y) < 4dX<§’y) “(logn+1) < M -8logn .

In order to get a stronger result, we need a more delicate analysis. Assume that dy(x,y) <
0/8, then if x; € B({z,y},9/8), then Prz; separates z,y] = 0. In addition, if z; ¢
B({z,y},d/2), then Pr[z; separates x,y] = 0. Therefore

Pr[Il(z) # H(y)] < Z 4dX§;U?y) < dx(?y) - 41og ’g({xay}>g/§)| ‘
JeB{r ) o \B({za}ofs) 7 [B({z,y},0/8)]

Exercise: A metric space (X, dy) is called 5-padded-decomposable for 5 > 0 if for every
0 > 0 there is a probability distribution p over partitions of X, satisfying the following
properties.

(a). Diameter Bound: For every II € supp(p) and A € 11, diam(A) < é.

(b). Padding: For every x € X and € < §/8,

PriBlr.e) g @] <85

Show that every n-point metric space is O(logn)-padded-decomposable.

References

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In 37th Annual Symposium on Foundations of Computer Science, pages 184-193. IEEE,
1996.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485-497, 2004.

[RR98] Y. Rabinovich and R. Raz. Lower bounds on the distortion of embedding finite metric
spaces in graphs. Discrete Comput. Geom., 19(1):79-94, 1998.

7/7



