
Randomized Algorithms 2017A - Lecture 10

Metric Embeddings into Random Trees

Lior Kamma

1 Introduction

Embeddings and Distortion. An embedding of a metric space (X, dX) into a metric
space (Y, dY ) is a map f : X → Y . Its (bi-Lipschitz) distortion is the least D ≥ 1 such
that

∀x, y ∈ X. dX(x, y) ≤ dY (f(x), f(y)) ≤ D · dX(x, y) .

Some related results previously seen in class

Claim. Every n-point metric space embeds isometrically (i.e., with distortion 1) into `n∞.

Theorem (Bourgain 1985). Every n-point metric space embeds into `2 with distortion
O(log n).

Theorem (Johnson-Lindenstrauss). Every n-point metric subspace of `d2 embeds into `k2
with distortion (1 + ε), where k = O(ε−2 log n).

Tree Metrics. Consider an undirected graph G = (V,E) with non-negative edge weights
{we}e∈E.

Exercise: Show that the function dG : V × V → R, which maps every pair x, y ∈ V to
the length of a shortest path between x and y in G w.r.t. w, is a metric on V .

A metric space (Y, dY ) is called a tree metric space if there exists a tree G such that Y
embeds isometrically into G.

“Dream Goal”: Embed an arbitrary metric space (X, dX) into a tree metric space with
“small” distortion.

Motivation. We first note that every finite tree metric space can be embedded isomet-
rically into `1.

Exercise: Prove it.

Additionally, many optimization and online problems involve a metric defined on a set
of points. It is often useful to embed a metric space into a simpler one while keeping
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the distances approximately. Specifically, many such problems can be efficiently solved or
better approximated on trees.

Bear the following example, called k-median, in mind. You are given a metric space
(X, dX) and an integer k. The goal is to choose a set S ⊆ X of size at most k, that
minimizes the objective function

∑
x∈X dX(x, S). This problem is known to be NP-Hard,

however it can be solved optimally on trees in polynomial time. The heuristic is as follows.
Embed X into a tree metric Y , solve the problem on Y , and construct a respective solution
in X.

Details are omitted at this point, mainly due to the fact that, unfortunately, this
approach does not work so well.

Embedding a Cycle into a Single Tree. Let (Cn, dCn) denote the shortest-path metric
on an unweighted n-cycle. One can easily show show that embedding the cycle into a
spanning tree incurs a distortion D ≥ Ω(n). In fact, Rabinovich and Raz [RR98] showed
that every embedding of the cycle into a tree (not necessarily a spanning tree, and may
have additional vertices) incurs distortion ≥ Ω(n).

2 Randomized Embeddings

However, not all is lost. If we consider a random embedding of Cn, then we can bound
the distortion in expectation. Let T be the random tree that results from deleting a single
edge of Cn chosen uniformly at random. Notice that this embedding satisfies the following
two properties (proved in class).

1. For every x, y ∈ Cn. dCn(x, y) ≤ dT (x, y).

2. For every x, y ∈ Cn. E[dT (x, y)] ≤ 2dCn(x, y).

Exercise: Extend the result to a weighted cycle.

New Goal. Embed an arbitrary metric space (X, dX) into a random dominating tree
metric with “small” expected distortion.

In fact, we will show a somewhat stronger result.

Definition 1. A k-hierarchically well-separated tree (k-HST) is a rooted weighted tree
T = (V (T ), E(T )) satisfying the following properties.

1. For every node v ∈ V (T ), all edges connecting v to a child are of equal weight.

2. The edge weight along a path from the root to a leaf decrease by a factor of at least
k.
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Theorem 1 ([FRT04]). Let (X, dX) be an n-point metric space. There exists a random-
ized polynomial-time algorithm that embeds X into the set of leaves of a 2-HST T =
(V (T ), E(T )) such that the following holds (we may assume that X ⊆ V (T )).

1. For every x, y ∈ X. d(x, y) ≤ dT (x, y).

2. For every x, y ∈ X. E[dT (x, y)] ≤ O(log n)dX(x, y).

Note that since the distortion is bounded in expectation, we can still apply the ap-
proximation heuristic considered earlier for problems in which the objective function is
linear.

Back to k-Median.

Lemma 1. The k-median problem can be solved efficiently on the metric space induced by
the set of leaves of a 2-HST.

Exercise: Prove Lemma 1. Hint: Use dynamic programming.

Corollary 1. There exists a randomized approximation algorithm for the k-median problem
with expected ratio O(log n).

proof sketch. Given a metric space (X, dX) and an integer k, we apply Theorem 1 and
randomly embed X into a 2-HST T . We solve the problem on the leaves of T and return
the solution.

3 Partitions, Laminar Families and Trees.

Definition 2. A set-family L ⊆ 2X is called laminar if for every A,B ∈ L, if A ∩ B 6= ∅
then A ⊆ B or B ⊆ A.

A laminar family L ⊆ 2X such that {x} ∈ L for all x ∈ X, induces a tree T such that
V (T ) = L and the leaves of T are exactly {{x} : x ∈ X} in a straightforward manner.

We can construct a laminar family by repeatedly partitioning X. In order to make sure
the algorithm halts, we can, e.g. decrease the diameter of the sets in the partition in each
iteration. Let Π be a partition of X. Every A ∈ Π is called a cluster, and for every x ∈ X,
let Π(x) denote the unique cluster A ∈ Π such that x ∈ S. Denote the diameter of X by
∆. By scaling we may assume without loss of generality that minx,y∈X dX(x, y) = 1.
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Input: X.
Output: A laminar family L ⊆ 2X such that {{x} : x ∈ X} ⊆ L.

1: Π0 ← {X}, L ← {X}
2: for i = 1 to log ∆ do
3: Πi ← ∅.
4: for all A ∈ Πi−1 do
5: if |A| > 1 then
6: Let Π be a partition of A into clusters of diameter at most 2−i∆.
7: Πi ← Πi ∪ Π.
8: L ← L ∪ Π.
9: return L.

Algorithm 1: Constructing a Laminar Family

It remains to show how to construct the partitions Πi, i ∈ [log ∆], and how to set the
weights of the tree edges.

4 From Low-Diameter Decompositions to Low-Distortion

Embeddings

Definition 3. A metric space (X, dX) is called β-decomposable for β > 0 if for every
δ > 0 there is a probability distribution µ over partitions of X, satisfying the following
properties.

(a). Diameter Bound: For every Π ∈ supp(µ) and A ∈ Π, diam(A) ≤ δ.

(b). Separation: For every x, y ∈ X,

Pr
Π∼µ

[Π(x) 6= Π(y) ] ≤ β · dX(x, y)

δ
.

Theorem 2 ([Bar96], [FRT04]). Every n-point metric space is 8 log n-decomposable.

In fact, Fakcharoenphol, Rao and Talwar [FRT04] gave a somewhat stronger result,
which will prove essential in the analysis of the embedding. We replace the separation
property in Definition 3 by the following, stronger requirement.

(b’). For every x, y ∈ X, if dX(x, y) < δ
8

then

Pr
Π∼µ

[Π(x) 6= Π(y) ] ≤ dX(x, y)

δ
· 8 log

|B({x, y}, δ/2)|
|B({x, y}, δ/8)|

,

where B({x, y}, r) = {z ∈ X : dX({x, y}, z) ≤ r} for all r > 0.
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We can now update Algorithm 1 and construct the tree embedding.

Input: X.
Output: A 2-HST with X being the set of leaves.

1: Π0 ← {X}.
2: V (T )← Π0, E(T )← ∅.
3: for i = 1 to log ∆ do
4: Πi ← ∅.
5: for all A ∈ Πi−1 do
6: if |A| > 1 then
7: Let Π be a random partition of A as in Theorem 2 with δ = 2−i∆.
8: Πi ← Πi ∪ Π.
9: V (T )← V (T ) ∪ Π.

10: Add to E(T ) an edge from A to every cluster in Π, of weight δ.
11: return T .

Algorithm 2: Constructing a Random Embedding into a 2-HST

Applying Theorem 2, we now turn to prove Theorem 1. Note that the leaves of T are
exactly the sets {x} for all x ∈ X, and thus for every x ∈ X, we can identify {x} ∈ V (T )
with x. Clearly T is a 2-HST. Consider next x, y ∈ X and let i0 be the unique integer such
that dX(x, y) ∈ (2−i0∆, 2−(i0−1)∆], and let i∗ be the first index for which Πi∗(x) 6= Πi∗(y).
By the diameter bound of the partition we get that i∗ ≤ i0. We therefore conclude the
following.

Claim 1. dT (x, y) ≥ dX(x, y).

Proof. dT (x, y) ≥ 2 · 2−i∗ ≥ 2−i0+1∆ ≥ dX(x, y).

Claim 2. dT (x, y) ≤ 2−i
∗+2∆.

Proof. Denote by u ∈ V (T ) the least common ancestor of x, y. Consider the path from u
to x. Since T is a 2-HST we get that the length of the path is at most

∞∑
i=i∗

2−i∆ = 2−i
∗+1∆ .

The length of the xy-path in T is at most twice as long.

The following claim concludes the proof of Theorem 1.

Corollary 2. E[dT (x, y)] ≤ O(log n)dX(x, y).

Proof. Since 1 ≤ i∗ ≤ i0, then E[dT (x, y)] =
∑i0

i=1 E[dT (x, y)|i∗ = i] · Pr[i∗ = i]. By

Claim 2, E[dT (x, y)|i∗ = i] ≤ 2−i+2∆, and by Theorem 2, Pr[i∗ = i] ≤ dX(x,y)
2−i∆

·log |B({x,y},2−i∆/2)|
|B({x,y},2−i∆/8)| .

Therefore

E[dT (x, y)] ≤
i0∑
i=1

2−i+2∆ · dX(x, y)

2−i∆
· log

|B({x, y}, 2−i−1∆)|
|B({x, y}, 2−i−3∆)|

= 4dX(x, y)

i0∑
i=1

log
|B({x, y}, 2−i−1∆)|
|B({x, y}, 2−i−3∆)|

.
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All but a constant number of elements of the sum are canceled, and therefore E[dT (x, y)] ≤
O(log n)dX(x, y).

5 Randomized Low-Diameter Decompositions

We now turn to prove Theorem 2. The following algorithm samples a partition of X. We
will show that the distribution induced by the algorithm satisfies the conditions of the
theorem.

Input: X, δ.
Output: A partition Π as in Theorem 2

1: Π← ∅.
2: let π be a random ordering of X.
3: independently choose R ∈ (δ/4, δ/2] uniformly at random.
4: for all j ∈ [n] do
5: let Bj = B(π(j), R).
6: let Cj = Bj \

⋃
j′<j Bj′

7: if Cj 6= ∅ then Π← Π ∪ {Cj}.
8: return Π.

Algorithm 3: Constructing a Random Partition

Clearly for every C ∈ Π, diam(C) ≤ δ. Fix x, y ∈ X, and let x1, x2, . . . , xn be an
ordering of X in ascending distance from {x, y} (breaking ties arbitrarily). Fix j ∈ [n].
We say that xj settles x, y if B(xj, R) is the first ball (in the order induced by π) that has
non-empty intersection with {x, y}. We say that xj cuts x, y if |B(xj, R)∩{x, y}| = 1, and
xj separates x, y if xj both settles x, y and cuts x, y.

Notice that the event that xj cuts x, y depends only on the choice of R and is indepen-
dent of the choice of π. Assume, without loss of generality that dX(j, x) ≤ dX(j, y).

Claim 3. Pr[xj separates x, y] ≤ 1
j
· 4dX(x,y)

δ
.

Proof. First note that

Pr[xj separates x, y] = Pr[xj separates x, y | xj cuts x, y] · Pr[xj cuts x, y] .

Note that xj cuts x, y if and only if R ∈ [dX(j, x), dX(j, y)). Since R is uniformly distributed
over (δ/4, δ/2], and from the triangle inequality we get that

Pr[xj cuts x, y] = Pr[R ∈ [dX(j, x), dX(j, y)) ] ≤ dX(j, y)− dX(j, x)

δ/4
≤ 4dX(x, y)

δ
.

Conditioned on xj cutting x, y, assume toward contradiction that there exists j′ < j such
that xj′ precedes xj in the order induced by π. Since dX(xj′ , {x, y}) ≤ dX(xj, {x, y}) =
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dX(xj, x) ≤ R, it follows that {x, y} ∩ B(xj′ , R) 6= ∅ and therefore xj does not settle x, y,
a contradiction. Therefore,

Pr[xj separates x, y | xj cuts x, y] ≤ Pr[xj precedes xj′ for all j′ < j] ≤ 1

j

Since Pr[Π(x) 6= Π(y)] ≤
∑

j∈[n] Pr[xj separates x, y] we get that

Pr[Π(x) 6= Π(y)] ≤
∑
j∈[n]

4dX(x, y)

jδ
≤ 4

dX(x, y)

δ
· (log n+ 1) ≤ dX(x, y)

δ
· 8 log n .

In order to get a stronger result, we need a more delicate analysis. Assume that dX(x, y) ≤
δ/8, then if xj ∈ B({x, y}, δ/8), then Pr[xj separates x, y] = 0. In addition, if xj /∈
B({x, y}, δ/2), then Pr[xj separates x, y] = 0. Therefore

Pr[Π(x) 6= Π(y)] ≤
∑

j∈B({x,y},δ/2)\B({x,y},δ/8)

4dX(x, y)

jδ
≤ dX(x, y)

δ
· 4 log

|B({x, y}, δ/2)|
|B({x, y}, δ/8)|

.

Exercise: A metric space (X, dX) is called β-padded-decomposable for β > 0 if for every
δ > 0 there is a probability distribution µ over partitions of X, satisfying the following
properties.

(a). Diameter Bound: For every Π ∈ supp(µ) and A ∈ Π, diam(A) ≤ δ.

(b). Padding: For every x ∈ X and ε < δ/8,

Pr
Π∼µ

[B(x, ε) 6⊆ Π(x)] ≤ β · ε
δ
.

Show that every n-point metric space is O(log n)-padded-decomposable.
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