
Randomized Algorithms 2017A – Lecture 6

Distance Oracles and Distance Labeling via Embedding∗

Robert Krauthgamer

1 Distance Oracles

Goal: Preprocess a graph G = (V,E) with edge lengths l : E → R+ into a (small) data structure
that can answer in time O(1) queries about the distance d = dG (between any two vertices u, v ∈ V).

We denote n = |V | and m = |E|.

Naive solution: Store all
(
n
2

)
distances in a matrix/array, with direct access in time O(1).

Can one “compress” the information, perhaps at the expense of accuracy, i.e., the distances are
only approximated?

Theorem 1 [Thorup-Zwick, 2001]: There is an algorithm that preprocesses an integer k ≥
2 and a graph G in expected time O(kmn1/k) and produces a data structure of expected size
O(kn1+1/k) words that can be used to answer distance queries in time O(k) and approximation
factor 2k − 1.

Remark: We will ignore the preprocessing time, and focus on storage (space). In particular, we
assume the shortest path between every two vertices is computed, and essentially use only the fact
that distances satisfy the triangle inequality (i.e., it holds for every n-point metric space).

Algorithm Prep(G,k):

1. A0 = V ; Ak = ∅.

2. for i = 1, . . . , k − 1

3. construct Ai by including each u ∈ Ai−1 independently with probability 1/n1/k.

4. for every v ∈ V

5. for i = 0, . . . , k − 1

6. store d(v,Ai) = min{d(v, w) : w ∈ Ai} and the minimizer w as pi(v)

7. set d(v,Ak) = ∞.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

8. store B(v) = ∪k−1
i=0 {w ∈ Ai \ Ai+1 : d(v, w) < d(v,Ai+1)} in a hash table that answers

whether w
?
∈ B(v) and if so, what is its distance to v, in O(1) worst-case time.

Intuition of preprocessing:

The sets Ai are subsamples of V at different “levels”, and provide “landmarks”.

Each “pivot” pi(v) is just the level i landmark closest to v.

What is the “bunch” set B(v)? sort V by distance from v, and partition it into k levels (rings)
determined by positions roughly n1/k, n2/k, . . .; store n1/k random vertices from each ring (but
coordinated for different “centers” v).

Analysis of preprocessing storage:

The main concern is
∑

v |B(v)|, as the pivots can be stored in O(kn) space. The total space bound
O(kn1+1/k) follows from the next lemma.

Lemma 2: For every v ∈ V , we have E[|B(v)|] ≤ O(kn1/k).

The proof was seen in class.

Exer: Show how to implement the preprocessing algorithm in the claimed runtime.

Hint: To compute the pivots of level i, run Dijkstra (single-source shortest paths) from “all” of Ai

(e.g. connect all of Ai to a new source vertex s with length 0 edges). To compute the bunches,
check for each w to which bunches B(v) it belongs by running Dijkstra from w but truncating it,
and bound the expected number of times each edge is traversed.

Algorithm Query(u,v):

1. i = 0; w = u // throughout w = pi(u)

2. while w /∈ B(v)

3. i = i+ 1

4. (u, v) = (v, u) // swap [“ignore” at first]

5. w = pi(u)

6. return d(u,w) + d(w, v)

The runtime is obviously O(k).

Analysis of query algorithm: The entire Ak−1 ⊆ B(v), hence some answer is always returned,
and the number of u− v swaps is at most k − 1.

Lemma 3: At each iteration (including swap of u, v), the distance d(w, u) increases by at most
∆ = d(u, v).

The proof was seen in class.

The lemma implies the approximation factor (strech bound), since we start with d(w0, u0) = 0, and
at the final i we have d(wi, ui) ≤ i·∆ ≤ (k−1)∆, and thus also d(wi, vi) ≤ d(wi, ui)+d(ui, vi) ≤ k∆.

2

2 Distance labeling via embedding into ℓ∞

Goal: Preprocess a graph G = (V,E) with edge lengths l : E → R+ to create a (small) label
for each vertex, so that the distance d = dG (between any two vertices u, v ∈ V) can be computed
from their labels.

Remark: We actually require that the evaluation algorithm does not depend on G, i.e., a single
evaluation algorithm for the entire family of graphs of size n.

Embedding and distortion: An embedding of a metric space (V, d) into (Rs, ℓ∞) is a map
f : V → Rs. Its (bi-Lipschitz) distortion is the least D ≥ 1 such that

∀x, y ∈ V, d(x, y) ≤ ∥f(x)− f(y)∥∞ ≤ D · d(x, y).

By scaling f , we can instead “move” D to the LHS. The definition extends to embedding into any
metric space, such as ℓ1 or ℓ2.

Frechet embedding: This is an embedding (map) f : V → Rs where each coordinate fi is defined
as fi : x → d(x,Ai) for some subset Ai ⊆ V , where by definition d(x,A) = min{d(x, a) : a ∈ A}.

Fact 4: Each coordinate fi is 1-Lipschitz (nonexpansive), i.e.,

|fi(x)− fi(y)| ≤ d(x, y) ∀x, y ∈ V.

Proposition 5: Every n-point metric space embeds isometrically (i.e., with distortion 1) into ℓn∞,
and thus G admits an exact distance labeling with label-size O(n) words.

Proof: Consider a Frechet embedding with n singleton sets Ax = {x}. By the above fact, ∥f(x)−
f(y)∥∞ ≤ d(x, y). For the opposite direction, for every pair x, y ∈ X, we can look at coordinate fx
and get ∥f(x)− f(y)∥∞ ≥ |fx(x)− fx(y)| = d(x, y).

Question: Can we reduce the dimension? If we allow distortion?

Theorem 6 [Matousek 1996, based on Bourgain 1985]: For every integer k ≥ 2, every
n-point metric space (X, d) embeds with distortion 2k − 1 into ℓs∞ where s = O(kn1/k logn). This
implies a distance labeling with approximation 2k − 1 and label size s = O(kn1/k log n).

Proof of Theorem 6: We employ a Frechet embedding whose sets are constructed at random, as
follows. Let q = 1/n1/k. For each i = 1, . . . , k, construct at random a “group” of m = 24

q lnn sets

Ai,1, . . . , Ai,m that include every point in V independently with probability qi = min{1/2, qi} =
min{1/2, 1/ni/k}.

Lemma 7: For every x, y ∈ V there exists i, such that with probability ≥ q/12,

|d(x,Ai,1)− d(y,Ai,1)| ≥ ∆ := 1
2k−1d(x, y).

Let’s use the lemma to finish the proof of the theorem. For every x, y ∈ X, the probability that all
the m random sets (in group i suggested by the lemma) fail this event is at most

(1− q/12)m < e−(q/12)·(24/q) lnn = 1/n2.

3

Finally, apply union bound over the
(
n
2

)
pairs of points.

Proof of Lemma 7 (sketch): Define the following sequence of balls: Let B0 = {x}, let B1 be
a (closed) ∆-ball around y, let B2 be a 2∆-ball around x and continue this way (with alternating
centers) until Bk. Observe that the last two radii add up to (k − 1)∆ + k∆ = d(x, y).

We claim it is possible to find indices i ≥ 1 and t such that both

|Bt| ≥ n(i−1)/k and |Bt+1| ≤ ni/k.

Intuitively, it just says there is t such that |Bt+1|/|Bt| ≤ n1/k, hence at sampling rate qi = 1/ni/k,
there is reasonable probability to “hit” one set and “miss” the other one.

Assume for now the claim is true. Let E1 be the event that Ai,1 contains a point from Bt, and E2

the event that Ai,1 contains NO point from Bt+1. Clearly,

Pr[|d(x,Ai,1)− d(y,Ai,1)| ≥ ∆] ≥ Pr[E1 ∩ E2] = Pr[E1] · Pr[E2],

because the two events are independent (that’s why we used open balls). It is not difficult to verify,
using the above claim, that Pr[E2] ≥ 1/4 and Pr[E1] ≥ q/3.

To prove the claim, partition the interval [1, n] to k intervals I1, . . . , Ik where Ii = [n(i−1)/k, ni/k].
If the sequence |B1|, . . . , |Bk| is monotonically increasing, then we can use the pigeon-hole principle
(k + 1 balls and only k intervals) to conclude that some interval has two balls, and in particular
two successive balls |Bt|, |Bt+1|. Otherwise, there is t such that |Bt| ≥ |Bt+1| then this t and the
interval Ii containing |Bt| satisfy the claim.

QED

Exer: Show that every n-point metric space (V, d) embeds into ℓ1 with distortion O(log2 n).

Hint: Use the proof of Theorem 6 with k = log n to obtain an embedding f into (Rs, ℓ1) for
s = O(log2 n).

Exer: Extend this analysis to an embedding into ℓ2 (instead of ℓ1) with an even better distortion.

Remark: This is result is stronger not only because the distortion is smaller, but also because of a
well-known fact that for finite metrics ℓ2 ⊂ ℓ1 (we may see its proof later).

Theorem 9 [Bourgain 1985]: Every n-point metric space (X, d) embeds into ℓ2 with distortion
O(log n).

We did not see the proof in class. The basic approach is similar but a more involved analysis is
needed to “collect” contributions from all coordinates.

4

