
Sublinear Time and Space Algorithms 2018B – Lecture 2

Distinct Elements and Point Queries∗

Robert Krauthgamer

1 Distinct Elements

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ∥x∥0 =
|{i ∈ [n] : xi > 0}| be the number of distinct elements in the stream. It’s also called the F0-moment
of σ.

Naive algorithms: Storage O(n) (a bit for each possible item) or O(m log n) (list of seen items)
bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function h : [n] → [0, 1] where each h(i) has an independent uniform distri-
bution on [0, 1]. (This is an “idealized” description, because even though we can generate n truly
random bits, we cannot store and re-use them.)

Idea: We will have exactly d* = ∥x∥0 distinct hashes, and since they are random, by symmetry
their minimum should be around 1/(d*+1).

1. Init: z = 1 and a hash function h

2. When item i ∈ [n] is seen, update z = min{z, h(i)}

3. Output: 1/z − 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues
later.

Denote by d* := ∥x∥0 the true value, and let Z denote the final value of z (to emphasize it is a
random variable).

Lemma 1: E[Z] = 1/(d*+1).

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Choose an additional random value X uniformly from [0, 1] (for sake of analysis only), then by the
law of total expectation

E[Z] = E
Z
[Pr
X
[X < Z | Z]] = E

Z
[E
X
[1{X<Z} | Z]] = E[1{X<Z}] = 1/(d*+1).

Lemma 2: E[Z2] = 2
(d∗+1)(d∗+2) and thus Var[Z] ≤ (E[Z])2.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both
by calculating the integral).

Algorithm FM+:

1. Run k = O(1/ε2) independent copies of algorithm FM, keeping in memory Z1, . . . , Zk (and
functions h1, . . . , hk)

2. Output: 1/Z̄ − 1 where Z̄ = 1
k

∑k
i=1 Zi

As before, averaging reduces the standard deviation by factor
√
k, and then by Chebyshev’s in-

equality, WHP Z̄ ∈ d*±O(d* /
√
k) = d*±εd*.

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues
later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store
a (1 + ε)-approximation of z, which can reduce the number of bits from O(log n) (in a “typical”
implementation of the real-valued hashes) to O(log log n). A particularly efficient 2-approximation
is to store the number of zeros in the beginning of z′s binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

1. Init: z1 = · · · = zk = 1 for k = O(1/ε2) and a hash function h

2. When item i ∈ [n] is seen, update z1 < · · · < zk to be the k smallest distinct values among
{z1, . . . , zk, h(i)}

3. Output: X := k/zk

Storage requirement: Again, O(k) words (not including randomness); we will discuss implementa-
tion issues later.

Remark: Notice the output will not make sense if k > d*, because zk will maintain its initial value
of 1. Figure out where this is needed in the analysis.

2

Lemma 3: For suitable k = O(1/ε2),

Pr[X > (1 + ε) d*] ≤ 0.05,

Pr[X < (1− ε) d*] ≤ 0.05.

Thus, X ∈ (1± ε) d* with probability ≥ 90%.

Intuition: The event X = k/zk > (1 + ε) d* is equivalent to zk < k
(1+ε) d*

, which means that at

least k hashes are smaller than some threshold; since each of the d* distinct hash values meets this
threshold independently with probability k

(1+ε) d*
, we expect only k

1+ε hashes to meet the threshold.

If we set k ≥ 1/ε2, then the standard deviation is
√
k ≤ εk, and we can use Chebyshev’s inequality.

Exer: Prove the above lemma.

3 ℓ1 Point Query via CountMin

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ∥x∥p =
(
∑

i|xi|p)1/p be its ℓp-norm. Let α ∈ (0, 1) and p ≥ 1 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i ∈ [n], report x̃i
such that WHP

x̃i ∈ xi ± α∥x∥p.

Observe: ∥x∥1 ≥ ∥x∥2 ≥ . . . ≥ ∥x∥∞, hence higher norms (larger p) give better accuracy. We will
see an algorithm for ℓ1, which is the easiest.

Exer: Show that the ℓ1 and ℓ2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for ℓ2 and ℓ∞.

It is not difficult to see that ℓ∞ point query is hard. For instance, with α = 1/2 we could recover
an arbitrary binary vector x ∈ {0, 1}n, which (at least intuitively) requires Ω(n) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ℓ1 point
queries that uses a (linear) sketch of O(α−1 log n) memory words to achieve accuracy α with success
probability 1− 1/n2.

We will initially assume all xi ≥ 0.

Algorithm CountMin:

(Assume all xi ≥ 0.)

1. Init: Set w = 4/α and choose a random hash function h : [n]→ [w].

2. Update: Maintain table/vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j xi.

3. Output: To estimate xi return x̃i = Sh(i).

The update step can indeed be implemented in a streaming fashion: When item i arrives, we need
to update x← x+ei. This update is easy because the sketch is a linear map L : Rn → Rw (observe

3

that Sj =
∑

i 1{h(i)=j}xi), and thus L(x+ ei) = L(x) + L(ei).

We call S a sketch to emphasize it is a succinct version of the input, and L a sketching matrix.

Analysis (correctness): We saw in class that x̃i ≥ xi and Pr[x̃i ≥ xi + α∥x∥1] ≤ 1/4.

4

