Sublinear Time and Space Algorithms 2018B – Lecture 2 Distinct Elements and Point Queries*

Robert Krauthgamer

1 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and let $||x||_0 = |\{i \in [n] : x_i > 0\}|$ be the number of distinct elements in the stream. It's also called the F_0 -moment of σ .

Naive algorithms: Storage O(n) (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a "hash" function $h : [n] \to [0, 1]$ where each h(i) has an independent uniform distribution on [0, 1]. (This is an "idealized" description, because even though we can generate n truly random bits, we cannot store and re-use them.)

Idea: We will have exactly $d^* = ||x||_0$ distinct hashes, and since they are random, by symmetry their minimum should be around $1/(d^*+1)$.

1. Init: z = 1 and a hash function h

2. When item $i \in [n]$ is seen, update $z = \min\{z, h(i)\}$

3. Output: 1/z - 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues later.

Denote by $d^* := ||x||_0$ the true value, and let Z denote the final value of z (to emphasize it is a random variable).

Lemma 1: $\mathbb{E}[Z] = 1/(d^* + 1).$

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward).

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Choose an additional random value X uniformly from [0, 1] (for sake of analysis only), then by the law of total expectation

$$\mathbb{E}[Z] = \mathbb{E}[\Pr_{X}[X < Z \mid Z]] = \mathbb{E}[\mathbb{E}[\mathbb{I}_{\{X < Z\}} \mid Z]] = \mathbb{E}[\mathbb{1}_{\{X < Z\}}] = 1/(d^* + 1).$$

Lemma 2: $\mathbb{E}[Z^2] = \frac{2}{(d^*+1)(d^*+2)}$ and thus $\operatorname{Var}[Z] \leq (\mathbb{E}[Z])^2$.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run $k = O(1/\varepsilon^2)$ independent copies of algorithm FM, keeping in memory Z_1, \ldots, Z_k (and functions h^1, \ldots, h^k)

2. Output: $1/\overline{Z} - 1$ where $\overline{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i$

As before, averaging reduces the standard deviation by factor \sqrt{k} , and then by Chebyshev's inequality, WHP $\overline{Z} \in d^* \pm O(d^*/\sqrt{k}) = d^* \pm \varepsilon d^*$.

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a $(1 + \varepsilon)$ -approximation of z, which can reduce the number of bits from $O(\log n)$ (in a "typical" implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z's binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

1. Init: $z_1 = \cdots = z_k = 1$ for $k = O(1/\varepsilon^2)$ and a hash function h

2. When item $i \in [n]$ is seen, update $z_1 < \cdots < z_k$ to be the k smallest distinct values among $\{z_1, \ldots, z_k, h(i)\}$

3. Output: $X := k/z_k$

Storage requirement: Again, O(k) words (not including randomness); we will discuss implementation issues later.

Remark: Notice the output will not make sense if $k > d^*$, because z_k will maintain its initial value of 1. Figure out where this is needed in the analysis.

Lemma 3: For suitable $k = O(1/\varepsilon^2)$,

$$\Pr[X > (1 + \varepsilon) d^*] \le 0.05,$$

$$\Pr[X < (1 - \varepsilon) d^*] \le 0.05.$$

Thus, $X \in (1 \pm \varepsilon) d^*$ with probability $\geq 90\%$.

Intuition: The event $X = k/z_k > (1 + \varepsilon) d^*$ is equivalent to $z_k < \frac{k}{(1+\varepsilon)d^*}$, which means that at least k hashes are smaller than some threshold; since each of the d^{*} distinct hash values meets this threshold independently with probability $\frac{k}{(1+\varepsilon)d^*}$, we expect only $\frac{k}{1+\varepsilon}$ hashes to meet the threshold. If we set $k \ge 1/\varepsilon^2$, then the standard deviation is $\sqrt{k} \le \varepsilon k$, and we can use Chebyshev's inequality. **Exer:** Prove the above lemma.

3 ℓ_1 Point Query via CountMin

Problem Definition: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and let $||x||_p = (\sum_i |x_i|^p)^{1/p}$ be its ℓ_p -norm. Let $\alpha \in (0, 1)$ and $p \ge 1$ be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query $i \in [n]$, report \tilde{x}_i such that WHP

$$\tilde{x}_i \in x_i \pm \alpha \|x\|_p$$

Observe: $||x||_1 \ge ||x||_2 \ge \ldots \ge ||x||_{\infty}$, hence higher norms (larger p) give better accuracy. We will see an algorithm for ℓ_1 , which is the easiest.

Exer: Show that the ℓ_1 and ℓ_2 norms differ by at most a factor of \sqrt{n} , and that this is tight. Do the same for ℓ_2 and ℓ_{∞} .

It is not difficult to see that ℓ_{∞} point query is hard. For instance, with $\alpha = 1/2$ we could recover an arbitrary binary vector $x \in \{0, 1\}^n$, which (at least intuitively) requires $\Omega(n)$ bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ℓ_1 point queries that uses a (linear) sketch of $O(\alpha^{-1} \log n)$ memory words to achieve accuracy α with success probability $1 - 1/n^2$.

We will initially assume all $x_i \ge 0$.

Algorithm CountMin:

(Assume all $x_i \ge 0$.)

- 1. Init: Set $w = 4/\alpha$ and choose a random hash function $h: [n] \to [w]$.
- 2. Update: Maintain table/vector $S = [S_1, \ldots, S_w]$ where $S_j = \sum_{i:h(i)=j} x_i$.
- 3. Output: To estimate x_i return $\tilde{x}_i = S_{h(i)}$.

The update step can indeed be implemented in a streaming fashion: When item *i* arrives, we need to update $x \leftarrow x + e_i$. This update is easy because the sketch is a linear map $L : \mathbb{R}^n \to \mathbb{R}^w$ (observe

that $S_j = \sum_i \mathbb{1}_{\{h(i)=j\}} x_i$, and thus $L(x+e_i) = L(x) + L(e_i)$.

We call S a sketch to emphasize it is a succinct version of the input, and L a sketching matrix. Analysis (correctness): We saw in class that $\tilde{x}_i \ge x_i$ and $\Pr[\tilde{x}_i \ge x_i + \alpha ||x||_1] \le 1/4$.