
Sublinear Time and Space Algorithms 2018B – Lecture 3

ℓ2 Frequency Moment and Point Queries∗

Robert Krauthgamer

1 ℓ1 Point Query via CountMin (continued from last time)

Algorithm CountMin+:

1. Run t = log n independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , St (and functions h1, . . . , ht)

2. Output: the minimum of all estimates x̂i = minl∈[t] S
l
hl(i)

Analysis (correctness): As before, x̂i ≥ xi and

Pr[x̂i > xi + α∥x∥1] ≤ (1/4)t = 1/n2.

By a union bound, with probability at least 1−1/n, for all i ∈ [n] we will have xi ≤ x̂i ≤ xi+α∥x∥1.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

General x (allowing negative entries):

We saw in class that Algorithm CountMin actually extends to general x that might be negative,
and achieves the guarantee

Pr[x̃i ∈ xi ± α∥x∥1] ≤ 1/4.

Next class we will see how to amplify the success probability, using median (instead of minimum)
of O(log n) independent repetitions.

Exer: Let x ∈ Rn be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin+ sketch seen in class (for ℓ1 point queries) to estimate the median of x, which
means to report an index j ∈ [n] that with high probability satisfies

∑j
i=1 xj ∈ (12 ± ε)m.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

2 Frequency Moments and the AMS algorithm

ℓp-norm problem: Let x ∈ Rn be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its ℓp-norm ∥x∥p = (
∑

i|xi|p)1/p. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ2 norm within
factor 1 + ε [with high constant probability] using a linear sketch of size (dimension) s = O(ε−2).
It implies, in particular, a streaming algorithm.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r1, . . . , rn independently at random from {−1,+1}

2. Update: maintain Z =
∑

i rixi

3. Output: to estimate ∥x∥22 report Z2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z2] =
∑

i x
2
i = ∥x∥22, and Var(Z2) ≤ 2(E[Z2])2.

Algorithm AMS+:

1. Run t = O(1/ε2) independent copies of Algorithm AMS, denoting their Z values by Y1, . . . , Yt,
and output their mean Ỹ = 1

t

∑
j Y

2
j .

Observe that the sketch (Y1, . . . , Yt) is still linear.

Storage requirement: O(t) = O(1/ε2) words (for constant success probability), not including ran-
domness.

Analysis: We saw in class that

Pr[|Ỹ − E Ỹ | ≥ εE Ỹ] ≤ Var(Ỹ)

ε2(E Ỹ)2
≤ 2

tε2
.

Choosing appropriate t = O(1/ε2) makes the probability of error an arbitrarily small constant.

Notice it is actually a (1±ε)-approximation to ∥x∥22, but it immediately yields a (1±ε)-approximation
to ∥x∥2.

Exer: What would happen in the accuracy analysis if the ri’s were chosen as standard gaussians
N(0, 1)?

3 ℓ2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate

2

for each x2i (instead of xi).

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate ℓ2 point queries
within error α with constant high probability, using a linear sketch of dimension O(α−2). It implies,
in particular, a streaming algorithm.

It achieves better accuracy than CountMin (ℓ2 instead of ℓ1), but requires more storage (1/α2

instead of 1/α).

Algorithm CountSketch:

1. Init: Set w = 4/α2 and choose a pairwise independent hash function h : [n] → [w]

2. Choose pairwise independent signs r1, . . . , rn ∈ {−1,+1}

3. Update: Maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi.

4. Output: To estimate xi return x̃i = ri · Sh(i).

Storage requirement: O(w) words, i.e., O(α−2 log(nm)) bits. The hash functions can be stored
using O(log n) bits.

Correctness: We saw in class that Pr[|x̃i − xi|2 ≥ α2∥x∥22] ≤ 1/4, i.e., with high (constant)
probability, x̃i ∈ xi ± α∥x∥2.

Next class we will see how to amplify the success probability to 1 − 1/n2 using the median of
O(log n) independent copies.

3

