Sublinear Time and Space Algorithms 2018B – Lecture 3 ℓ_2 Frequency Moment and Point Queries*

Robert Krauthgamer

1 ℓ_1 Point Query via CountMin (continued from last time)

Algorithm CountMin+:

1. Run $t = \log n$ independent copies of algorithm CountMin, keeping in memory the vectors S^1, \ldots, S^t (and functions h^1, \ldots, h^t)

2. Output: the minimum of all estimates $\hat{x}_i = \min_{l \in [t]} S_{h^l(i)}^l$

Analysis (correctness): As before, $\hat{x}_i \ge x_i$ and

 $\Pr[\hat{x}_i > x_i + \alpha ||x||_1] \le (1/4)^t = 1/n^2.$

By a union bound, with probability at least 1-1/n, for all $i \in [n]$ we will have $x_i \leq \hat{x}_i \leq x_i + \alpha ||x||_1$.

Space requirement: $O(\alpha^{-1} \log n)$ words (for success probability $1 - 1/n^2$), without counting memory used to represent/store the hash functions.

Space requirement: $O(\alpha^{-1} \log n)$ words (for success probability $1 - 1/n^2$), without counting memory used to represent/store the hash functions.

General x (allowing negative entries):

We saw in class that Algorithm CountMin actually extends to general x that might be negative, and achieves the guarantee

 $\Pr[\tilde{x}_i \in x_i \pm \alpha \|x\|_1] \le 1/4.$

Next class we will see how to amplify the success probability, using median (instead of minimum) of $O(\log n)$ independent repetitions.

Exer: Let $x \in \mathbb{R}^n$ be the frequency vector of a stream of m items (insertions only). Show how to use the CountMin+ sketch seen in class (for ℓ_1 point queries) to estimate the median of x, which means to report an index $j \in [n]$ that with high probability satisfies $\sum_{i=1}^{j} x_j \in (\frac{1}{2} \pm \varepsilon)m$.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

2 Frequency Moments and the AMS algorithm

 ℓ_p -norm problem: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and fix a parameter p > 0.

Goal: estimate its ℓ_p -norm $||x||_p = (\sum_i |x_i|^p)^{1/p}$. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ_2 norm within factor $1 + \varepsilon$ [with high constant probability] using a linear sketch of size (dimension) $s = O(\varepsilon^{-2})$. It implies, in particular, a streaming algorithm.

Algorithm AMS (also known as Tug-of-War):

- 1. Init: choose r_1, \ldots, r_n independently at random from $\{-1, +1\}$
- 2. Update: maintain $Z = \sum_{i} r_i x_i$
- 3. Output: to estimate $||x||_2^2$ report Z^2

The sketch Z is linear, hence can be updated easily.

Storage requirement: $O(\log(nm))$ bits, not including randomness; we will discuss implementation issues a bit later.

Analysis: We saw in class that $\mathbb{E}[Z^2] = \sum_i x_i^2 = ||x||_2^2$, and $\operatorname{Var}(Z^2) \le 2(\mathbb{E}[Z^2])^2$.

Algorithm AMS+:

1. Run $t = O(1/\varepsilon^2)$ independent copies of Algorithm AMS, denoting their Z values by Y_1, \ldots, Y_t , and output their mean $\tilde{Y} = \frac{1}{t} \sum_j Y_j^2$.

Observe that the sketch (Y_1, \ldots, Y_t) is still linear.

Storage requirement: $O(t) = O(1/\varepsilon^2)$ words (for constant success probability), not including randomness.

Analysis: We saw in class that

$$\Pr[|\tilde{Y} - \mathbb{E}\,\tilde{Y}| \ge \varepsilon \,\mathbb{E}\,\tilde{Y}] \le \frac{\operatorname{Var}(\tilde{Y})}{\varepsilon^2 (\mathbb{E}\,\tilde{Y})^2} \le \frac{2}{t\varepsilon^2}.$$

Choosing appropriate $t = O(1/\varepsilon^2)$ makes the probability of error an arbitrarily small constant.

Notice it is actually a $(1\pm\varepsilon)$ -approximation to $||x||_2^2$, but it immediately yields a $(1\pm\varepsilon)$ -approximation to $||x||_2$.

Exer: What would happen in the accuracy analysis if the r_i 's were chosen as standard gaussians N(0, 1)?

3 ℓ_2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate

for each x_i^2 (instead of x_i).

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate ℓ_2 point queries within error α with constant high probability, using a linear sketch of dimension $O(\alpha^{-2})$. It implies, in particular, a streaming algorithm.

It achieves better accuracy than CountMin (ℓ_2 instead of ℓ_1), but requires more storage $(1/\alpha^2)$ instead of $1/\alpha$).

Algorithm CountSketch:

- 1. Init: Set $w = 4/\alpha^2$ and choose a pairwise independent hash function $h: [n] \to [w]$
- 2. Choose pairwise independent signs $r_1, \ldots, r_n \in \{-1, +1\}$
- 3. Update: Maintain vector $S = [S_1, \ldots, S_w]$ where $S_j = \sum_{i:h(i)=j} r_i x_i$.
- 4. Output: To estimate x_i return $\tilde{x}_i = r_i \cdot S_{h(i)}$.

Storage requirement: O(w) words, i.e., $O(\alpha^{-2}\log(nm))$ bits. The hash functions can be stored using $O(\log n)$ bits.

Correctness: We saw in class that $\Pr[|\tilde{x}_i - x_i|^2 \ge \alpha^2 ||x||_2^2] \le 1/4$, i.e., with high (constant) probability, $\tilde{x}_i \in x_i \pm \alpha ||x||_2$.

Next class we will see how to amplify the success probability to $1 - 1/n^2$ using the median of $O(\log n)$ independent copies.