
Sublinear Time and Space Algorithms 2018B – Lecture 4

Amplifying Success and Hash Functions∗

Robert Krauthgamer

1 Amplifying Success Probability

To amplify the success probability of Algorithm CountMin (in general case), we use median of
independent repetitions (instead of minimum), and analyze it using the following (standard) con-
centration bounds.

Chernoff-Hoeffding concentration bounds: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n]
are independently distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Algorithm CountMin++:

1. Run k = O(log n) independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: To estimate xi report the median of all basic estimates x̂i = median{Sl
hl(i)

: l ∈ [k]}

Exer: Prove that

Pr[x̂i ∈ xi ± α∥x∥1] ≤ 1/n2.

Hint: Define an indicator Yj for the event that copy j ∈ [k] succeeds, then use one of the concen-
tration bounds.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements and for Probabilistic Counting (say from constant to 1− 1/n2).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Hint: use independent repetitions + median.

Exer: Let x ∈ Rn be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin++ algorithm (for ℓ1 point queries) to estimate the median of x, which means to
report an index j ∈ [n] that with high probability satisfies

∑j
i=1 xj ∈ (12 ± ε)m.

Hint: Use a dyadic decomposition to express any interval [1..j] as the sum of at most log2 n intervals
from O(n log n) canonical intervals, then estimate each of these intervals.

2 Hash Functions

Independent random variables: Recall that two (discrete) random variables X,Y are inde-
pendent if

∀x, y Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. In particular, it implies E[XY ] = E[X] · E[Y ].

The above naturally extends to more than two variables, and then we say the random variables are
mutually (or fully) independent.

Pairwise independence: A collection of random variables X1, . . . , Xn is called pairwise inde-
pendent if for all i ̸= j ∈ [n], the variables Xi and Xj are independent.

Example: Let X,Y ∈ {0, 1} be random and independent bits, and let Z = X ⊕ Y . Then X,Y, Z
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1, . . . , Xn are pairwise independent, the variance Var(
∑

iXi) is exactly the
same as if they were fully independent, because

Var(
∑
i

Xi) = E[(
∑
i

Xi)
2]− (E[

∑
i

Xi])
2 =

∑
i,j

E[XiXj ]− (
∑
i

E[Xi])
2.

A different way to see it, is via the following well-known (and easy) fact: If X1, . . . , Xn are pairwise
independent (and have finite variance), then Var(

∑
iXi) =

∑
iVar(Xi).

The above definition extends to k-wise independence, where every subset of k random variables
should be independent.

Pairwise independent hash family: A family H of hash functions h : [n] → [M ] is called
pairwise independent if for all i ̸= j ∈ [n],

∀x, y Pr
h∈H

[h(i) = x, h(j) = y] = Pr[h(i) = x] Pr[h(j) = y].

A common scenario is that each h(i) is uniformly distributed over [M ].

Universal hashing: A family H of hash functions h : [n] → [M ] is called 2-universal if for all
i ̸= j ∈ [n],

∀x, y Pr
h∈H

[h(i) = x, h(j) = y] ≤ 1/M.

2



Observe that 2-universality is a weaker requirement than (follows from) pairwise independence
when each h(i) is distributed uniformly over [M ], but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume M ≥ n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p, q ∈ {0, 1, 2, . . . ,M − 1} = [M ] and set accordingly hp,q(i) = pi+ q (mod M).

The family H = {hp,q : p, q} is pairwise independent because for all i ̸= j and all x, y,

Pr
h∈H

[h(i) ≡ x, h(j) ≡ y] = Pr
p,q

[(
i 1
j 1

)
( pq ) ≡ ( xy )

]
= Pr

p,q

[
( pq ) ≡

(
i 1
j 1

)−1
( xy )

]
= 1

M2 ,

where we relied on the above matrix being invertible.

Storing a function hp,q from this family can be done by storing p, q, which requires log |H| =
O(logM) bits. In general, log |H| bits suffice to store an index of h ∈ H.

Another construction for M = 2:

Let A be a 0-1 matrix of size (2t − 1)× t with all possible (distinct) nonzero rows Ai ∈ {0, 1}t. For
a random p ∈ {0, 1}t, define hp : [2t] → {0, 1} by hp(i) := (Ap)i = ⟨Ai, p⟩, where all operations are
performed in GF [2] (i.e., modulo 2).

Storing the hash function requires log |H| = O(t) bits.

Exer: Prove that the family H = {hp : p} is pairwise independent.

Exer: Show that this construction generates k-wise independent bits whenever the matrix A satisfies
that every k rows are linearly independent.

Exer: Show that the correctness of algorithm CountMin (for ℓ1 point query) extends to using a
universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm CountSketch (for ℓ2 point query) can be imple-
mented with a limited (pairwise) independence and analyze how much additional storage the hash
function requires.

Hint: use separate randomness for the hash functions and for the signs.

Exer: Show that algorithm AMS (for estimating ℓ2 norm) works even if the random signs {ri}
are only 4-wise independent.

Exer: Show that the correctness of algorithm Bottom k (for Distinct Elements) can be extended
to using a pairwise independent hash function h : [n] → [n3] (instead of continuous range [0, 1]),
and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form {h(i) < threshold}, and relied on independence for
every pair h(i), h(j).

3


