
Randomized Algorithms 2019A – Lecture 7

Importance Sampling and Coresets for Clustering∗

Robert Krauthgamer

1 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C1, . . . , Cm over n variables
x1, . . . , xn, i.e. f = ∨m

i=1Ci where each Ci is the conjunction of literals like x2 ∧ x̄5 ∧ xn.

The goal is the estimate the number of Boolean assignments that satisfy f .

Theorem 1 [Karp and Luby, 1983]: Let S ⊂ {0, 1}n be the set of satisfying assignments
for f . There is an algorithm that estimates |S| within factor 1 + ε in time that is polynomial in
m+ n+ 1/ε.

1.1 A first attempt

Random assignments: Sample t random assignments, and let Z count how many of them are
satsifying. We can estimate |S| by Z/t · 2n.

Formally, we can write Z =
∑t

i=1 Zi where each Zi is an indicator for the event that the i-th sample
satisfies f . Then Z = 1

t

∑
i(Zi · 2n). We can see it is an unbiased estimator:

E[Z · 2n/t] =
t∑

i=1

E[Zi] · 2n/t = |S|.

Observe that Var(Z) = 1
t2
∑

iVar(Zi · 2n) = 1
t Var(Z1 · 2n). But even though we can use Chernoff-

Hoeffding bounds since Zi are independent, it’s not very effective because the variance could be
exponentially large.

Exer: Show that the standard deviation of Z1 (and thus Z) could be exponentially large relative
to the expectation.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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1.2 A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let Si ∈ {0, 1}n be all the assignments that satisfy the i-th clause, hence |Si| = 2n−len(Ci).

Remark: The naive approach does not use the DNF structure at all. We can use this structure by
writing S = ∪iSi, which can be expanded using the inclusion-exclusion formula, but it would be
too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause Ci with probability proportional to |Si| (namely, |Si|/M where M =
∑

i |Si|).

2. Choose at random an assignment a ∈ Si.

3. Compute the number ya of clauses satisfied by a.

4. Output Z = M
ya
.

We proved in class the following two claims.

Claim 2a: E[Z] = |S|.

Claim 2b: σ(Z) ≤ n · E[Z].

Exer: Show that |S| can be approximated within factor 1 ± ε with success probability at least
3/4, by averaging O(m2/ε2) independent repetitions of the above.

Exer: Show how to improve the success probability to 1−δ by increasing the number of repetitions
by an O(log 1

δ ) factor.

1.3 Importance sampling

It’s a tool to reduce variance when sampling. The idea is to sample, instead of uniformly, in a
“focused” manner that roughly imitates the contributions, and then “factor out” the bias in this
sample.

Setup: We want to estimate z =
∑

i∈[s] zi without reading all the zi values. The main concern
is that the zi are unbounded, and thus most of the contribution might come from a few unknown
elements, but we have a “good” lower bound on each element, intuitively pi ≈ zi

z .

Theorem 3 [Importance Sampling]: Let z =
∑

i∈[s] zi, and λ ≥ 1. Let Ẑ be an estimator

computed by sampling a single index i ∈ [s] with probability pi and setting Ẑ = zi/pi, where each
pi ≥ zi

λz and
∑

i∈[s] pi = 1. Then

E[Ẑ] = z and σ(Ẑ) ≤
√
λE[Ẑ].

Proof: was seen in class.
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Exer: Let z =
∑

i∈[s] zi and suppose that for each zi we already have an estimate within factor
b ≥ 1, i.e., some zi ≤ yi ≤ bzi. How many samples are needed to compute, with probability at least
3/4, a 1± ε factor estimate for z?

Exer: Explain our DNF counting algorithm above using the importance sampling theorem.

Hint: Assignments a that satisfy no clause are chosen with zero probability.

2 Coresets for Clustering

Let D(·, ·) denote the Euclidean distance in Rd.

Geometric Clustering: In the k-median problem the input is a set of n data points X =
{x1, . . . , xn} ⊂ Rd, and the goal is to find a set of k centers C = {c1, . . . , ck} ⊂ Rd that minimizes
the objective function

f(X,C) :=
∑
x∈X

D(x,C) =
∑
i∈[n]

min
j∈[k]

∥xi − cj∥2.

Note that the centers are not required be from X (the version with this requirement is called
discrete centers).

The k-means problem is similar but using squared distances.

Notation: We shall omit the subscript from all norms, as we always use ℓ2 norms.

Observe that points need not be distinct, i.e., we consider multisets, which is equivalent to giving
every point an integer weight, and admits a succinct representation. We thus would like to reduce
the number of distinct points, denoted throughout by |X|.

Strong Coreset: Let ϵ ∈ (0, 1/2) be an accuracy parameter. We say that S ⊂ Rd is a strong
ε-coreset of X (for objective f , which in our case is k-median) if

∀C = {c1, . . . , ck} ⊂ Rd, f(X,C) ∈ (1± ε)f(S,C).

Note: A weak coreset is similar, except the above requirement is only for the optimal centers for
the coreset, i.e., C ′ that minimizes f(S,C ′).

Goal: We want to construct small coresets. If done without computing an optimal solution C∗,
then it would be useful for computing a near-optimal solution, because it suffices to solve k-median
on the smaller instance S. If the construction requires computing C∗, it could still be useful when
sending (communicating) or storing the data.

We focus henceforth on existence (of coresets of a certain size), the algorithmic implementation
and applications are usually straightforward.
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2.1 Geometric Decomposition

Idea: Discretize the space to create a small set Ŝ, and “snap” every point in X to its nearest
neighbor in S. Throughout, the (closed) ball of radius r > 0 about c ∈ Rd is defined as

B(c, r) = {z ∈ Rd : ∥z − c∥ ≤ r}.

Lemma 4 (ε-Ball Cover): For every ε ∈ (0, 1), the unit ball B = B(⃗0, 1) in Rd can be covered
by (3/ε)d balls of radius ε.

The conclusion is that every point in the unit ball can be “approximated” by one of those (3/ε)d

centers, with additive error ε. This argument immediately extends to any ball of radius r > 0,
except that the additive error is now εr.

Exer: Prove this lemma.

Hint: Construct the covering iteratively, and use the volume estimate vol(B(c, r)) = rd ·vol(B(⃗0, 1)).

Theorem 5: Every setX of n points in Rd admits an ε-coreset S of cardinality |S| = O(k(9/ε)d log n).

Proof: Was seen in class.

Exer: Modify the above proof to be algorithmic, by using an O(1)-approximation to the minimum
cost (meaning a set C ′ such that f(X,C ′) ≤ O(1) ·f(X,C∗)), which can be computed in polynomial
time.

Exer: Extend this argument to k-means using the following generalized triangle inequality: For
every a, b, c ∈ Rd and ε ∈ (0, 1),∣∣∥a− c∥2 − ∥b− c∥2

∣∣ ≤ 12
ε ∥a− b∥2 + 2ε∥a− c∥2.
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