
Sublinear Time and Space Algorithms 2020B – Lecture 14

Communication Complexity and Streaming Lower Bounds*

Robert Krauthgamer

1 Indexing

Problem definition: Alice has input x ∈ {0, 1}n and Bob has as input an index i ∈ [n]. Their
goal is to output INDEX(x, i) = xi.

This function would be easy if Bob could send his (short) input to Alice. But we shall consider
one-way communication from Alice to Bob, and her input is much longer.

Theorem 1 [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication
complexity of indexing is Ω(n), even with shared randomness.

It’s therefore a “canonical” problem for reductions (in this model).

Proof by [Jayram, Kumar and Sivakumar, 2008]: Was seen in class (using an error cor-
recting code and some averaging arguments).

2 Streaming Lower Bounds: Exact ℓ0

Theorem 2: Every streaming algorithm for computing ℓ0 exactly in Rn, even a randomized one
with error probability 1/6, requires storage of Ω(n) bits.

Remark: This is true even for insertions-only streams.

Proof: Was seen in class, by reduction from the indexing problem.

Remark: Notice that our proof works even if random coins are not counted in the storage of the
streaming algorithm (because we rely on a communication lower bound with public coins).

Exer: Show a similar lower bound for exact ℓ1.

Hint: You obviously must use a stream with deletions.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Exer: Prove that every streaming algorithm for graph connectivity on n vertices (i.e., deciding
whether a stream of edge-insertions gives a connected graph), even a randomized one with error
probability 1/3, requires storage of Ω(n) bits.

3 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob’s inputs are x, y ∈ {0, 1}n, respectively, and their goal is to
determine whether the hamming distance between x, y is ≤ n

2 −
√
n or ≥ n

2 +
√
n.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is
Ω(n), even with shared randomness.

We skipped the proof of this theorem (For those interested, look for a proof by reduction from
Indexing by [Jayram, Kumar and Sivakumar, 2008]).

We mention in passing a stronger result, where the number of rounds is unbounded.

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded
number of rounds) of GHD is Ω(n), even with shared randomness.

4 Streaming Lower Bounds: Approximate ℓ0

Theorem 4: Every streaming algorithm that (1 + ε)-approximates ℓ0 in Rn for 1/
√
n ≤ ε < 1,

even a randomized one with error probability 1/6, requires storage of Ω(1/ε2) bits.

Remark: For smaller 0 < ε < 1/
√
n, the required storage is Ω(n); to see this, observe that an

algorithm for such “smaller” ε “solves” ε = 1/
√
n which is covered by the above theorem.

We skipped the proof of this theorem (for those interested, it is by reduction from GHD).

5 Current Research Directions

We concluded with a brief mention of research topics related to the course.

Streaming matrices: Different update models, different problems

Streaming (and sampling) edit distance: Different models of the input

Distributed monitoring: Continuously maintain an approximation to data residing in k sites
with little communication

Fast algorithms: in classic sense, like near-linear time
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