
Sublinear Time and Space Algorithms 2020B – Lecture 4

Amplifying Success Probability, ℓ2 Point Queries, and Hash

Functions*

Robert Krauthgamer

1 Amplifying Success Probability

To amplify the success probability of Algorithm CountMin (in general case), we use median of
independent repetitions (instead of minimum), and analyze it using the following (standard) con-
centration bounds.

Chernoff-Hoeffding concentration bounds: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n]
are independently distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Algorithm CountMin++:

1. Run k = O(log n) independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: To estimate xi report the median of all basic estimates x̂i = median{x̃li : l ∈ [k]}

Lemma:

Pr[x̂i ∈ xi ± α∥x∥1] ≤ 1/n2.

Proof: as seen in class, we define an indicator Yl for the event that copy l ∈ [k] succeeds, then use
one of the concentration bounds.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Theorem 1 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ℓ1 point
queries that uses a linear sketch of dimension O(α−1 log n) (which implies that its memory require-
ment is this number of words) to achieve accuracy α ∈ (0, 1) with success probability 1− 1/n2.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements and for Probabilistic Counting (say from constant to 1− 1/n2).

Hint: use independent repetitions + median.

2 ℓ2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate
with error proportional to ∥x∥2 instead of ∥x∥2.

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate ℓ2 point queries
within error α with constant high probability, using a linear sketch of dimension O(α−2). It implies,
in particular, a streaming algorithm.

It achieves better accuracy than CountMin (ℓ2 instead of ℓ1), but requires more storage (1/α2

instead of 1/α).

Algorithm CountSketch:

1. Init: Set w = 4/α2 and choose a hash function h : [n] → [w]

2. Choose random signs r1, . . . , rn ∈ {−1,+1}

3. Update: Maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi.

4. Output: To estimate xi return x̃i = ri · Sh(i).

Storage requirement: O(w) = O(α−2) words, not counting storage of the random bits.

Correctness: We saw in class that Pr[|x̃i − xi|2 ≥ α2∥x∥22] ≤ 1/4, i.e., with high (constant)
probability, x̃i ∈ xi ± α∥x∥2.

Exer: Explain how to amplify the success probability to 1 − 1/n2 using the median of O(log n)
independent copies.

3 Hash Functions

Independent random variables: Recall that two (discrete) random variables X,Y are inde-
pendent if

∀x, y Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. It implies that in particular E[XY] = E[X] · E[Y].

2

The above naturally extends to more than two variables, and then we say the random variables are
mutually (or fully) independent.

Pairwise independence: A collection of random variables X1, . . . , Xn is called pairwise inde-
pendent if for all i ̸= j ∈ [n], the variables Xi and Xj are independent.

Example: Let X,Y ∈ {0, 1} be random and independent bits, and let Z = X ⊕ Y . Then X,Y, Z
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1, . . . , Xn are pairwise independent, the variance Var(
∑

iXi) is exactly the
same as if they were fully independent, because

Var(
∑
i

Xi) = E[(
∑
i

Xi)
2]− (E[

∑
i

Xi])
2 =

∑
i,j

E[XiXj]− (
∑
i

E[Xi])
2.

Consequently (and this is well-known): If X1, . . . , Xn are pairwise independent (and have finite
variance), then Var(

∑
iXi) =

∑
iVar(Xi).

The above definition extends to k-wise independence, where every subset of k random variables
should be independent.

Pairwise independent hash family: A family H of hash functions h : [n] → [M] is called
pairwise independent if for all i ̸= j ∈ [n],

∀x, y ∈ [M] Pr
h∈H

[h(i) = x, h(j) = y] = Pr[h(i) = x] · Pr[h(j) = y].

This is the same as saying that h(1), . . . , h(n) are pairwise independent (when choosing random
h ∈ H).

A common scenario is that each h(i) is uniformly distributed over [M].

Universal hashing: A family H of hash functions h : [n] → [M] is called 2-universal if for all
i ̸= j ∈ [n],

Pr
h∈H

[h(i) = h(j)] ≤ 1/M.

Observe that 2-universality is weaker than (follows from) pairwise independence when each h(i) is
distributed uniformly over [M], but it suffices for many algorithms.

3

