Sublinear Time and Space Algorithms 2020B – Lecture 5 Hash functions, Heavy Hitters and Compressed Sensing^{*}

Robert Krauthgamer

1 Hash Functions (cont'd)

Construction of pairwise independent hashing:

Assume $M \ge n$ and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random $p, q \in \{0, 1, 2, ..., M - 1\} = [M]$ and set accordingly $h_{p,q}(i) = pi + q \pmod{M}$.

The family $H = \{h_{p,q} : p, q\}$ is pairwise independent because for all $i \neq j$ and all x, y,

$$\Pr_{h \in H}[h(i) \equiv x, h(j) \equiv y] = \Pr_{p,q}\left[\begin{pmatrix} i & 1 \\ j & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} \equiv \begin{pmatrix} x \\ y \end{pmatrix} \right] = \Pr_{p,q}\left[\begin{pmatrix} p \\ q \end{pmatrix} \equiv \begin{pmatrix} i & 1 \\ j & 1 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} \right] = \frac{1}{M^2}$$

where we relied on the above matrix being invertible.

Storing a function $h_{p,q}$ from this family can be done by storing p, q, which requires $\log |H| = O(\log M)$ bits. In general, $\log |H|$ bits suffice to store an index of $h \in H$.

One can reduce the size of the range [M] (from large $M \ge n$ to M = 2 or say $4/\alpha$), with a small overhead/loss.

Another construction for M = 2:

Let A be a 0-1 matrix of size $(2^t - 1) \times t$ with all possible (distinct) nonzero rows $A_i \in \{0, 1\}^t$. For a random $p \in \{0, 1\}^t$, define $h_p : [2^t] \to \{0, 1\}$ by $h_p(i) := (Ap)_i = \langle A_i, p \rangle$, where all operations are performed in GF[2] (i.e., modulo 2).

Storing the hash function requires $\log |H| = O(t)$ bits.

Exer: Prove that the family $H = \{h_p : p\}$ is pairwise independent.

Exer: Show that this construction generates k-wise independent bits whenever the matrix A satisfies that every k rows are linearly independent.

Exer: Show that the correctness of algorithm CountMin (for ℓ_1 point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Exer: Show that the correctness of algorithm CountSketch (for ℓ_2 point query) can be implemented with limited (pairwise) independence and analyze how much additional storage the hash function requires.

Hint: use separate randomness for the hash functions and for the signs.

Exer: Show that algorithm AMS (for estimating ℓ_2 norm) works even if the random signs $\{r_i\}$ are only 4-wise independent.

We will now see some applications of point queries.

2 Application 1: Heavy Hitters (Frequent Items)

Problem Definition: For parameter $\phi \in (0, 1)$ and $p \in [1, \infty)$, define

$$HH^{p}_{\phi}(x) = \{i \in [n] : |x_{i}| \ge \phi ||x||_{p}\}.$$

Observe that its cardinality is bounded by $\left|HH_{\phi}^{p}(x)\right| \leq 1/\phi^{p}$.

We will focus on p = 1 and ϕ is "not too small".

Approximate Heavy Hitters:

Parameters: $\phi, \varepsilon \in (0, 1)$.

Goal: return a set $S \subseteq [n]$ such that

$$HH^p_{\phi} \subseteq S \subseteq HH^p_{\phi(1-\varepsilon)}.$$

Reduction from HH to point query (for p = 1):

Assume we have an algorithm for ℓ_1 point queries with parameter $\alpha = \varepsilon \phi/2$, and amplify its success probability to $1 - \frac{1}{3n}$ if needed.

1. compute an estimate \tilde{x}_i for every $i \in [n]$ using this algorithm (this step takes time $O(n \log n)$ or even more)

2. report the set $S = \{i : \tilde{x}_i \ge (\phi - \varepsilon \phi/2) \|x\|_1\}$ (it is easy to know $\|x\|_1$ when $x \ge 0$, but more difficult in general)

Storage requirement: We can employ algorithm CountMin+ for ℓ_1 point queries, which requires $O(\alpha^{-1} \log n)$ words, and has error probability $1/n^2$, which is small enough. Then our approximate HH algorithm will take $O(\phi^{-1}\varepsilon^{-1}\log^2 n)$ bits.

Correctness: With probability $\geq 2/3$, all the *n* estimates are correct within additive $\varepsilon/2$. In this case, *S* contains all the ϕ -HH, and is contained in the $(\phi(1-\varepsilon))$ -HH.

Exer: Extend the above approach to p = 2 (using CountSketch). How much storage it requires? Use the AMS sketch to estimate the ℓ_2 -norm.

3 Application 2: Compressed Sensing (or Sparse Recovery)

Problem Definition: The input is a "signal" $x \in \mathbb{R}^n$, but instead of reading it directly we have only via linear measurements, i.e., we can observe/access $y_i = \langle A_i, x \rangle$ for $A_1, \ldots, A_m \in \mathbb{R}^n$ of our choice. Informally, the goal is to design few A_i 's and then to use them recover x. We shall focus on non-adaptive A_i , i.e., the entire sequence has to be determined in advance.

Let $A_{m \times n}$ be a matrix whose rows are the A_i 's, then we know that Ax = y. A trivial solution is to choose A that is invertible, which requires m = n. In general, this is optimal, because for smaller m there might be infinitely many solutions x to Ax = y.

Initial goal: Suppose that x is k-sparse (has at most k nonzeros, i.e., $||x||_0 = k$). What m = m(n, k) is needed to recover x?

True goal: Suppose x is approximately k-sparse. For what m can we recover an approximation to x?

Remark: In most applications, it's preferable that A has bounded precision (i.e., the entries of A are integers of bounded magnitude), as otherwise y must be "acquired" with very high precision. Sometimes it's even important that A's entries are nonnegative.

CountMin Approach: Recall that CountMin is a (randomized) linear sketch of $x \in \mathbb{R}^n$, hence it can be viewed as multiplying x by some matrix A with $p = O(\alpha^{-1} \log n)$ rows.

Sparse 0-1 vector: Suppose first $x \in \{0,1\}^n$ and is k-sparse. Then $||x||_1 = k$, and a CountMin+sketch of accuracy $\alpha = \frac{1}{3k}$ succeeds with probability at least 1 - 1/n in estimating all x_i 's within additive $\pm \alpha ||x||_1 \leq \pm \frac{1}{3}$, which can distinguish whether x_i is 0 or 1.

Sparse vector: If the nonzeros of x have different magnitudes, the above approach might require $\alpha \ll \frac{1}{k}$.

But a deeper inspection of CountMin shows that every coordinate has a good chance to "not collide" with any nonzero coordinate. This behavior is amplified by the repetitions + median trick's, and then WHP the estimator is exact, i.e., $\hat{x}_i = x_i$.

Exer: Show that a sketching matrix A with m = O(k) rows (linear measurements) and whose entries are random Gaussians (or chosen uniformly from [0,1]) can recover with high probability every k-sparse input x. Show it also for an ε -coherent matrix for $\varepsilon = \frac{1}{10k}$.

Hint: It suffices that every 2k columns are linearly independent.