
Sublinear Time and Space Algorithms 2020B – Lecture 8

ℓ0-sampling and streaming of graphs*

Robert Krauthgamer

1 ℓ0-sampling

Problem Definition (ℓp-sampling): Let x ∈ Rn be the frequency vector of the input stream.

The goal is to draw a random index from [n] where each i has probability |xi|p
∥x∥pp

.

We will see today the case p = 0, where the goal is to draw a uniformly random i from the set
supp(x) = {i ∈ [n] : xi ̸= 0}.

Algorithms may have some errors either in the probabilities being approximately correct (e.g., ±δ)
and/or that with some probability the algorithm gives a wrong answer (returns FAIL or a sample
not according to the desired distribution).

Framework for ℓ0-sampling [following Cormode and Firmani, 2014]:

(A) Subsample the coordinates of x with geometrically decreasing rates

(B) Detect if the resulting vector y is 1-sparse

(C) If y is 1-sparse, recover its nonzero coordinate.

(A) Subsampling:

The algorithm chooses a random hash function h : [n] → [log n], such that for each i ∈ [n],

Pr[h(i) = l] = 2−l, ∀l ∈ [log n].

(The probabilities do not add to 1, and in the remaining probability we can set h(i) to nil, i.e., no
level.)

For each “level” l ∈ [log n], create a virtual stream for the coordinates in h−1(l), formally defined
as y(l) ∈ Rn which is obtained from x by zeroing out coordinates outside h−1(l).

Observe that y is obtained from x by a linear map.

Lemma: If x ̸= 0, then there exists l ∈ [log n] for which Pr[|supp(y)| = 1] = Ω(1).

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Proof: Was seen in class.

Exer: Show that whenever supp(y) contains only one coordinate, that coordinate is indeed drawn
uniformly from supp(x).

Exer: Show how to achieve a similar guarantee using a hash function h that is only pairwise
independent. (However, now the “surviving” coordinate might be non-uniform.)

The success probability can be increased to 1 − δ by O(log 1
δ) repetitions. The overall result is a

O(log n log 1
δ) virtual streams y.

(C) Sparse recovery (of a 1-sparse vector): Suppose y ∈ Rn (which is y(l) from above) is
1-sparse. How can we find which coordinate i is nonzero?

Compute A =
∑

i yi and B =
∑

i i · yi and report their ratio B/A.

For 1-sparse vector the output is always correct, as this step is deterministic.

Notice that A,B form a linear sketch whose size (dimension) is 2 words. Moreover, they can be
maintained over the original stream x (no need to maintain the virtual stream y explicitly).

(B) Detection (if a vector is 1-sparse):

Lemma: There is a linear sketch to detect whether y is 1-sparse, using O(log n) words and
achieving one-sided error probability 1/n3 (i.e., if |supp(y)| = 1 it always accepts, otherwise it
accepts with probability at most 1/n3).

Proof: Was seen in class, using the AMS sketch to test if ℓ2 norm is zero.

Exer: Show how to improve the storage to O(1) words by a more direct approach.

Hint: Use a linear map (of y) with random coefficients from [−n3, n3].

Overall Algorithm:

The algorithm goes over the virtual streams (levels and their repetitions) in a fixed order, and
reports the first coordinate that is recovered successfully and passes the detection test (otherwise
FAIL).

Storage: The total storage is O(log2 n log 1
δ) words, not including randomness.

However, using limited randomness in the subsampling (necessary to reduce randomness) might
introduce some bias to the uniform probabilities.

Variations of this approach: Detection and recovery of vectors with sparsity s = 1/ε instead of s = 1,
using k-wise independent hashing in the subsampling, or using Nisan’s pseudorandom generator to
reduce storage.

Theorem [Jowhari, Saglam, Tardos, 2011]: There is a streaming algorithm with storage
O(log2 n log 1

δ) bits, that with probability at most δ reports FAIL, with probability at most 1/n2

reports an arbitrary answer, and with the remaining probability produces a uniform sample from
supp(x).

2

2 Streaming of Graphs

Basic model: Consider an input stream that represents a graph G = (V,E) as a sequence of
edges on the vertex set V = [n]. Denote m = |E|.

It can be viewed as a sequence of edge insertions to a graph.

Remark: We will consider later a more general model that allows edges deletions (called dynamic
graphs).

Semi-streaming: The usual aim is space requirement Õ(n), which can generally be much smaller
than the trivial bound O(m) of storing the current graph explicitly (but without extra workspace
an algorithm may need).

For many problems, Ω(n) storage is required (even to get approximate answers).

Connectivity: Determine whether the graph G is connected (or even which pairs u, v ∈ V are
connected).

Can be solved (in the insertions-only model) with storage requirement O(n) words, by maintaining
a spanning forest...

Distances: Maintain all the distances in the graph, i.e., given a query u, v ∈ V report their
distance.

Theorem: Can be solved within approximation 2k − 1 (for integer k ≥ 1) in the insertions-only
model with storage requirement O(n1+1/k) words.

The idea is to use a greedy spanner construction by [Althofer, Das, Dobkin, Joseph and Soares,
1993].

Proof: Create and store a subgraph G′ as follows. When an edge (u, v) arrives, check if the
distance between its endpoints in G′ is dG′(u, v) ≤ 2k − 1. If it is not, then add the edge to G′

(otherwise, do nothing).

It is not difficult to verify that

∀u, v ∈ V, dG(u, v) ≤ dG′(u, v) ≤ (2k − 1)dG(u, v).

The bound on the number of edges in G′ follows by a theorem from extremal graph theory, because
its girth (length of shortest cycle) is g ≥ 2k + 1.

Exer: Show how to 2-approximate maximum matching and vertex-cover using space of O(n)
words.

3

