Sublinear Time and Space Algorithms 2020B – Problem Set 3

Robert Krauthgamer

Due: June 22, 2020

General instructions: Please keep your answers short and easy to read. You can use results, calculations or notation seen in class without repeating them, unless asked explicitly to redo them.

1. Let $h', h'' \in \mathbb{R}^n$ be supported on disjoint sets $T', T'' \subset [n]$ respectively, and let the matrix $A \in \mathbb{R}^{m \times n}$ be $(|T'| + |T''|, \varepsilon_0)$ -RIP. Show that

 $|\langle Ah', Ah''\rangle| \le \varepsilon_0 ||h'||_2 ||h''||_2.$

Hint: Consider first h', h'' that have unit length, and apply the formula $||u+v||_2^2 - ||u-v||_2^2 = 4\langle u, v \rangle$ to u = Ah' and v = Ah''.

2. Let $y \in \mathbb{R}^n$ be the frequency vector of an input stream in the turnstile model (i.e., allowing insertions and deletions), and suppose its coordinates are integers in the range $[-n^2, n^2]$.

Design a linear sketch that detects whether $|\operatorname{supp}(y)| = 1$ using storage requirement of O(1) words (i.e., $O(\log n)$ bits), not counting storage of the algorithm's random coins. Its success probability should be at least 1 - 1/n.

Hint: Use a variant of the AMS sketch with large random coefficients.

3. Recall that in our ℓ_0 -sampling algorithm, $h : [n] \to [\log n]$ is a hash function such that each h(i) is distributed like

$$\Pr[h(i) = l] = 2^{-l}, \qquad \forall l \in [\log n],$$

and since these probabilities do not add to 1, in the remaining probability h(i) = nil.

Assume now that $h(1), \ldots, h(n)$ are pairwise independent and show that for every $x \neq 0$, there is a level $l \in [\log n]$ for which

$$\Pr\left[|\operatorname{supp}(y^{(l)})| = 1\right] = \Omega(1).$$

(We proved this in class but assuming full independence.) Recall that $y^{(l)}$ is obtained from x by zeroing coordinates $i \notin h^{-1}(l)$. If needed, slightly modify the distribution, e.g., extend it to one more level by picking $l \in [1 + \log n]$.

Remark: Unfortunately, pairwise independence is not enough to guarantee that the "unique surviving" coordinate is uniform.

Extra credit:

4. Show that for an arbitrary $x \in \mathbb{R}^n$, if some \tilde{x} satisfies the ℓ_1/ℓ_2 guarantee

$$||x - \tilde{x}||_2 \le \frac{O(1)}{\sqrt{k}} ||x_{tail(k)}||_1$$

(e.g., as seen in class using an RIP measurement matrix), then $x^* = \tilde{x}_{top(k)}$ satisfies the ℓ_1/ℓ_1 guarantee

$$||x - x^*||_1 \le O(1) ||x_{tail(k)}||_1.$$

Hint: Let T be the top k coordinates of x, and \tilde{T} the top k coordinates of \tilde{x} . Split the coordinates into $\tilde{T}, T \setminus \tilde{T}$, and the rest.