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Bloom Filter, Derandomiaztion, Cuckoo Hashing
∗

Moni Naor

1 Bloom Filters

A Bloom filter is a data structure that represents a set S ⊆ U of size n approximately in the following
sense: for every x ∈ S it always answers ‘yes’ and for x 6∈ S it answers ‘yes’ with probability at
most ε. The probability is over the randomness used for generating the representation. Bloom
filters are named after Burton Bloom who suggested them in 1970 [5]. It is one the most useful
data structures (See the survey [7].

Representing a set precisely takes dlog
(
u
n

)
e bits at least, since this is log the number of different

subset of size n and also there exists a representation that uses this many bits. A good approxi-
mation for log

(
u
n

)
is n log(u/n) where we are loosing at most an O(n) additive factor which we can

get using the following:
(n/e)n < n! < e

√
n(n/e)n.

How much can we save by using an approximate representation? If the representation takes m
bits at most, then for any S there exists a representation W ∈ {0, 1}m with at most ε(u − n)
false positive (this true is since there is always a point that achieves at most the expected false
positive rate. To get from W an exact representation of S we need to store a set of size n out of
the false positives under W plus the ‘true’ positives, namely S, which can be done using at most
dlog

(
ε(u−n)+n

n

)
e bits. So we get that⌈

log

(
ε(u− n) + n

n

)⌉
+m ≥

⌈
log

(
u

n

)⌉
.

Therefore m has to be at least n log(1/ε)−O(n).

The ‘abstract’ construction we saw was to hash S to a range of size n/ε and then solve the exact
dictionary problem using an optimal number of bits (we did not talk how to achieve that construc-
tively, but one method is given here [3]). If the initial hash uses a pairwise independent function g
then the probability of an element x 6∈ S colliding with any element is S is bound by n · ε/n = ε.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.
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The number of bits required is thus —g— (which is 2 log u plus n log(1/ε). So this result is very
tight.

We saw a construction based on Cuckoo Hashing where instead of storing the element x itself we
store g(x) for a pair-wise independent hash function g.

The original and common way of implementing Bloom filters is different and uses a {0, 1} vector.
You can read about that in Chapter 5 of Mitzenmacher-Upfal.

2 Random Graphs

There are several models for random graphs. Among the more significant ones are Erdős–Rényi
models

• G(n, p): n nodes, each edge exists with probability p independently of the others.

• G(n,M): n nodes, the graph is chosen uniformly at random from the collection of all graphs
which have n nodes and M edges.

The expected number of edges in G(n, p) is
(
n
2

)
p. Therefore, as a rule of thumb, G(n, p) behaves

similarly to G(n,M) with M =
(
n
2

)
p.

You can rad a lot about properties of random graphs and algorithms in both Alon-Spencer and
Mitzenmacher-Upfal.

The questions relevant to Cuckoo Hashing are What happens with very sparse graphs, i.e. np < 1.

3 Derandomziation

How to construct random looking hash functions? One aproach is throug k-wise Independence.
Definition: A family H of hash functions hi : U 7→ [0, ...,m− 1] is k-wise independent if for any k
distinct x1, . . . , xk ∈ U and for any y1, ..., yk ∈ [0, ...,m− 1]:

Pr
h∈H

[h(x1) = y)1h(x2) = y.2..
h(xk) = yk] = 1/mk

The ‘classical’ construction of k-wise Independence is using random polynomials of degree k − 1.
The down side of this construction is that it take time k to evaluate at a given point. There
are approximate constructions of k-wise Independence that are based on cuckoo-hashing, where
evaluation is much faster. See [9? , 4].

In general, the compression argument we gave works well with log n-wise Independence. We need
this much Independence to argue that there are no large components. It is sufficient, since we will
never consider more than log n long chains.

We would like to get conditions where we can use k-wise independence instead of full independence
for k which is polylog.
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We can appeal to a result of Braverman [6] that says that poylog-wise independence fools all of
AC0. We need to define ‘fools’ and AC0.

AC0 is the class of function {0, 1}n 7→ {0, 1} that are computable by circuits that are poly size,
constant depth, unbounded fan-in gates of ‘And’s and ‘Or’s. Examples for functions not in AC0

are the parity function or those involving exact counting. Approximate counting is in AC0.

By a distribution µ fooling a complexity class we essentially mean that it is indistinguishable for a
function in the complexity class whether it gets a uniformly at random input or one drawn from µ
Fools means that the the probability of outputting a ’1’ is close on both distributions.

Theorem: Let C be circuit of depth d and size m. Let µ be an r-wise independent distribution for
r ≥ cd(logm)O(d2). Then C cannot tell µ from the uniform distribution.

Note that for m = nO(logn), r is polylog(n). The way to apply the theorem in the context of data
structures is to argue that checking whether the data structure works properly of not can be done
with a low depth circuit (in the case of cuckoo hashing, it can be done with a depth 3 circuit of
size nO(logn)). See Arbirman, Naor and Segev [2].
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