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The lecture introduces randomized algorithms. Why are they interesting? They may solve problems
faster than deterministic ones, they may be essential in some settings, especially when we want
to go to the sublinear time complexity realm1, they are essential in distributed algorithms e.g. for
breaking symmetry, they yield construction of desirable objects that we do not know how to build
explicitly and are essential for cryptography2 and privacy3. Another type of study is to analyze
algorithms when assuming some distribution on the input, or some mixture of worst case and then
a perturbation of the input (known as smoothed analysis). But our emphasis would be worst case
data where the randomness is created independently of it. That is we assume the algorithm or
computing device in addition to the inputs gets also a random ‘tape’ (like the other tapes of the
Turing Machine, but this one with truly random symbols).

One nice feature that some randomized algorithms have is that they are simple. We demonstrated
this in two algorithms (actually got only to see the min-cut algorithm).

Randomized algorithms existed for a long time, since the dawn of computing (for instance the
numerical “Monte Carlo Method”4 from the 1940’s or Shannon’s work [8], also from that time.

The Minimum Cut Problem

The algorithm we saw demonstrates simplicity in a spectacular way. No need for flows, just pick
a random edge and contract! The min-cut algorithm is due to Karger from SODA 1993 (the
motivation was parallel algorithm). There is a faster version with Stein where the repetition is
done in a clever way (i.e. not starting from scratch each time), yielding a near O(n2) algorithm [1]
and nearly linear in [2].

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.

1For instance, the famed PCP Theorem, that states that every NP statement can be verified using a few queries
must use randomness for picking the queries. Another area is property testing.

2Where no task is possible without good randomness
3Differential privacy is a notion for sanitizing data that involves necessarily randomization, e.g. adding noise to

an aggregate of a population.
4Do not confuse with the term “Monte Carlo Algorithm” which is a general name for an algorithm whose running

time is deterministic (usually polynomial) but may err.
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Question: What happens if instead of picking a random edge you pick at random a pair of vertices
and contract? Is the resulting algorithm a good min-cut algorithm?

The analysis of the algorithm had the form of analyzing the probability of a bad event in step i of
the algorithm, given that a bad event had not occurred so far (the bad event was picking an edge
from the cut). If that probability has an upper bound of Pi, then the probability of a bad event
ever occurring is bounded by Πn

i=1Pi. In this case Pi = 1− 2/(n− i + 1).

Question: The algorithm also showed a bound on the number of min-cuts, since for every min-cut
the probability of outputting this specific cut was 1/n2. In contrast show that for s-t cuts (where
there are two input nodes s and t and should be separated, there can be exponentially many
min-cuts.

Question: some student asked, what happens if the edges are sampled by picking a node u ∈ V
uniformly at random and then picking a random neighbor v of u and outputting the edge (u, v) (I
assume that if there are parallel edges, then the neighbor gets the appropriate weight).

1. Show that this is not identical to picking an edge at random from E.

2. What can you say about the probability of success of the algorithm when edges are chosen
this way?

Another important idea we discussed is amplification. Given an algorithm which has some small
probability of success, but running it many times, as a function of the probability, we can get a high
probability of success. In this case the basic algorithm had probability 1/n2 of finding the min-cut,
so after running it n2 time and taking the best (smallest cut) we have probability (1−1/n2)n

2 ≈ 1/e.
Repeating it a few more times gets us high probability of success.

Entropy: what Ryan O’Donnell lecture on Entropy, number 24a and 24b from his course on a CS
Theory Toolkit: https://www.youtube.com/watch?v=b6x4AmjdvvY (later on perhaps we will talk
about 24c).
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