
Randomized Algorithms 2020-1

Lecture 3

Large Deviation Bounds (Chernoff) and BPP Amplification
∗

Moni Naor

We reviewed the complexity classes ZPP, RP, Co-RP and BPP. Recall that L ∈ RP if there is an
algorithm (Probabilistic Turing Machine M) s.t. for x ∈ L we have that Prob[M(x) outputs ‘yes’] ≥
1/2 and for x 6∈ L we have Prob[M(x) outputs ‘no’] = 1. We say that L ∈ BPP if there is a
Probabilistic Turing Machine M s.t. for x ∈ L we have that Prob[M(x) outputs ‘yes’] ≥ 2/3 and
for x 6∈ L we have Prob[M(x) outputs ‘no’] ≥ 2/3 (all the probabilities are over the random tapes).
We mentioned that ZPP = RP ∩ Co−RP

We discussed the question of hitting set for RP. For any language L ∈ RP a hitting set for input
size n is a collection Cn = {R1, R2, . . . Rm} where for every x ∈ L ∩ {0, 1}n there is an Ri ∈ Cn

such when the input x is executed with random tape Ri the result is correct. That is if M(·, ·) is
the Turing Machine establishing that L is in RP, then M(x,Ri) accepts. The goal was to show
that for any language L ∈ RP there is a hitting set of size m = n. (This idea is due to Adleman
in 1978 [1].

There are several ways to show this. One suggestion was to give a probabilistic construction, i.e.
chose the collection at random and show that it is a hitting set with non-zero probability (this
proves the existence of a proper collection). Instead, we made the following argument: For each
x ∈ L∩ {0, 1}n at least half the R’s make M(x,R) accept. This implies that there exists a specific
R that for at least half of {L ∩ {0, 1}n} makes the TM M accept when used as the random tape.
Call this R1 and delete from further consideration all x’s for which R1 was accepting. Regarding
the remaining x’s in L∩ {0, 1}n, it is still the case that at least half the R’s make them accept. So
we can find an R2 that is good for at least half of the remaining and so on for at most n rounds.

How robust is BPP wrt to the probabilities of acceptance? We discussed two possible alterations of
the class BPP: Weak-BPP and Strong-BPP. In the latter, the probability of error can be be made,
for any polynomial q(n), as small as 2−q(n). In the former, the advantage over guessing (being
correct with probability 1/2) is 1/p(n) for some polynomial p(n). The main point is:

Theorem 1. Weak-BPP=Strong-BP.

If M is a Turing Machine satisfying the Weak-BPP conditions with a polynomial p(n), for any
polynomial q(n) we construct a Turing Machine M ′ for the Strong-BPP condition. The construction

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.

1

is based on running M many times independently and taking the majority of the answers as the
final answer. How many repetitions t of the original algorithm do we need?

The problem we are faced with is figuring out the probability that {0, 1} random variables

Z1, Z2, . . . , Zt,

each being ’1’ with probability 1/2 + 1/p and ’0’ otherwise, have a majority of ’1’s. Note that the
probability of M ′ being correct dominates this probability.

To analyze the probability of this event we used large deviation bounds. We mentioned Markov’s
inequality and Chebyshev’s inequality1. They are not sufficient for the task at hand, since we want
exponential probability of failure. So we introduced and used one of the Chernoff-Hoefding-Azuma-
Bernstein inequalities. specifically, we use:

Lemma 2. Let X1, X2, . . . , Xt be mutually independent random variables such that |Xi| ≤ 1 and
E[Xi] = 0. Then

Pr[
t∑

i=1

Xi > a] ≤ e−a
2/2t.

To use this lemma, set Xi to be Zi−1/2−1/p. Now E[Xi] = 0. Since our goal is to get probability
of error of the form 2−q, We need q = a2/2t and we have a = t/p. So we Set t = 2qp2 and obtain
the desired amplification.

Watch: Chernoff, Hoeffding, etc. bounds, CMU, Lecture 5a,b,c of CS Theory Toolkit (Ryan
O’Donnell): https://www.youtube.com/watch?v=qqHHvOp5N6w

Derandomizing BPP non-uniformly we used this to argue that BPP is in Non-Uniform P, that
is that there exists a fixed advice string for each size n that make a Turing Machine recognizes in
polynomial membership in L ∩ {0, }n. Equivalently, there are polynomial sized circuits for recog-
nizing L. You can read about non-uniformity and machines that take advice in Oded Goldreich’s
notes [3].

Question: Define the class PP as those languages with a probabilistic Turing machine where for
each input x we have that Pr[M(x,R)] is correct] > 1/2. Show that NP ⊂ PP .

Vague Question: Can you argue that taking the majority is the best way to amplify the proba-
bility of success of a BPP Algorithm? Or is there some other function, e.g. majority of majorities,
that is better?

Recall checking matrix multiplication: given three n × n matrices A,B and C how do you check
that A · B = C, say over the finite field GF [2] (or some other finite field GF [q])? To recompute
the product A · B is relatively expensive: the asymptotic time it takes is denoted as O(nω) where
the current (as of 2014) best value for ω is ≈ 2.3728639). A method suggested in 1977 by Freivalds
takes O(n2) for verification: pick at random a vector r ∈ {0, 1}n and compute (i) A(Br)) and (ii)
Cr and compare the two resulting vectors. The complexity of these operations is O(n2) since they
are matrix times vector operations. If AB = C, then the algorithms always says ’yes’.
Question Prove that if A · B 6= C, then the algorithm says ‘no’ with probability at least 1/2. If

1In how many ways can ”Chebyshev” be legitimately spelled?

2

the finite field is GF [q] and the random vector is chosen appropriately, what is the probability of
inequality?

References

[1] Leonard Adleman, Two theorems on random polynomial time, FOCS 1978.

[2] Noga Alon and Joel Spencer, The Probabilistic Method, Appendix A.

[3] Oded Goldreich, Non-uniformity and PH, 2005
http://www.wisdom.weizmann.ac.il/~oded/PSX/cc-text7.pdf

3

