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1 Streaming Algorithms

Suppose you want to compute a function on a stream of data but do not have enough memory to
store it. We will consider single pass algorithm, that is once the data has passed there is no further
access to it. We would like as little extra storage as possible.

Several issue come up: Which functions are computable? At what accuracy can they be computed?
There is a rich literature one the subject with many interesting algorithms and lower bounds.

For most tasks, if they are doable at all, then randomness is essential. One notable ‘counter-
example’ we saw was the Boyer Moore algorithm for finding a a majority element, provided such
an element exists.

2 Multiset equality

The problem we addressed can be viewed as a ‘streaming’ one. We have two multi-sets A and B
and they are given in an arbitrary order. Once an element is given it cannot be accessed again
(unless it is explicitly stored) and our goal is to have a low memory algorithm. We required a
family of functions H that was incremental in nature, in the sense that for a function h ∈ H:

• Given h, h(A) and an element x it is easy to compute h(A ∪ {x}).

• For any two different multi-sets A and B the probability over the choice of h ∈ H that
h(A) = h(B) is small.

• The description of h is short and the output of h is small.

The function we saw was based on treating the set A as defining a polynomial PA(x) = Πa∈A(x−a)
over a finite field whose size is larger than the universe from which the elements of A are chosen
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(say a prime Q > |U |). The member of the family of functions is called hx for x ∈ GF [Q] and
defined as hx(A) = PA(x). The probability that two sets collide (i.e. hx(A) = hx(B), which in turn
means that PA(x) = PB(x)) is max{|A|, |B|}/Q, since this is the maximum number of points that
two polynomials whose degree is at most max{|A|, |B|} can agree without being identical.

Storing hx and storing h(A) as it is computed requires just O(logQ) bits, so the resulting algorithm
never needs to store anything close size to the original sets.

The Petrushka proposal: let f : N 7→ N be an ordering of the primes, i.e. f(i) returns the ith
prime. Now an alternative to the definition of a polynomial PA define an integer NA = Πa∈Af(a).
Claim: for all mutli-sets A and B, if A 6= B, then NA 6= NB. Of course one cannot hope to store
NA explicitly. Instead, just as evaluating PA(x) at point y can be done on-the-fly, it is possible to
compute NA mod Q. The hash family now is hQ where Q is a random prime chosen from a certain
size.

Question: Analyze the Petrushka method. Suggest the appropriate domain from which to chose Q.

Reading and Watching assignment:

• Watch the lecture by David Woodruff on “Adversarially Robust Streaming Algorithms”
https://www.youtube.com/watch?v=9qP3JCWNgnc

• Tim Roughgarden’s Notes on streaming and communication complexity. Read Sections 1-5
http://timroughgarden.org/w15/l/l1.pdf

Old questions we did not finish discussing and to which we will return next week:

Vague Question: Can you argue that taking the majority is the best way to amplify the proba-
bility of success of a BPP Algorithm? Or is there some other function, e.g. majority of majorities,
that is better?

Question Prove that if A ·B 6= C, then Freivald’s algorithm for the verification of matrix multipli-
cation says ‘no’ with probability at least 1− 1/q if the finite field is GF [q] and the random vector
is chosen appropriately.
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