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Lecture 7

How To Guess Cards with Little Memory∗

Moni Naor

The scenario we are considering is where a deck of n distinct cards (for simplicity labeled 1, 2, . . . , n)
is shuffled and the cards from the deck are drawn one by one. A player called ‘guesser’ tries to
guess the next card, for n rounds and gets a point for each correct guess. We are interested in the
expected number of points the guesser can have.

Suppose that the guesser has perfect memory and can recall all the cards that it has seen, then
what is expected number of correct guesses? At any point the guesser picks one of the cards that
have not appeared so far as a guess. If there are i cards left, the probability of guessing correctly
is 1/i and the expected number of guesses is
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= Hn ≈ lnn.

Note that any guess of an unseen card has the same probability of success, so there is really not
much of a strategy here.

Question: What can you say about high concentration in this case?

Now consider the opposite scenario, where the guesser has no memory at all. I.e. before it turns
over a card it has no idea what cards have already appeared. But we will give it for free the round
number. So the best strategy it may have is represented by a fixed guess gi for the round i. The
probability that this is correct is 1/n, so the expectation over of all n rounds is 1.

Note: By guessing say ’1’ all the time the guesser can assure getting exactly 1 correct guess.

Now suppose that the guesser has m bits of memory. That is it has a state M represented by
m bits; whenever it sees a card that was turned over it moves to the next state and outputs a
guess. What is the expected number of points now? How many bits do we need in order to achieve
something like what the perfect-memory-guesser can achieve.

One observation is that we can pretend as if there are only m cards, i.e. ignore all cards of face
value larger than m and have a perfect recall on the first s cards. This gives us Hm ≈ lnm. Is this
the best possible? As we will see, you can do much better.

∗These notes summarize what was discussed in the zoom class. The homework is to answer the questions in the
text and footnotes.
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Remember the last k cards: It is possible to know for certain the last card using log n bits:
keep track of the sum of the cards ( bmodn). Just before the last card arrive can figure out the
unique missing one. We can generalize this to the k last cards using O(k log n) bits. For instance,
the polynomial from the set comparison protocol. We track the value of the polynomial at k
points, starting with the value of the points of the set A = {1, 2, . . . n}.1 Can use this to get Hm′

on expectation for m′ = m/ log n.

The two methods are compatible: of the m bits: use m/2 for the first method and m/2 for the
second one. The last card with face value in 1, ...,m/2 is expected when there are 2n/m cards left.
Or the expected number of cards with face value at most m/2 appearing in the the last m/2 log n

cards is m2

2 log n < 1. So for m ≤
√
n the two useful periods do not overlap! We get min{2Hm′ , Hn}.

For s =
√
n this is almost as much as for m = n.

As we will see it is possible to do much better.

1 Low Memory Card Guessing by Following Subsets

Claim 1. There is a method using m bits of memory that obtains 1/2 min{log n,
√
m} correct

guesses in expectation

In other words, with log2 n bits of memory you get the close to the maximum benefit. Furthermore,
you can obtain expectation (1− α) lnn with m which is O(log(1/α) log2 n.

In terms of the code used, you can get away with just the simple idea of summing the cards. The
general idea is to follow the cards that appeared in various subsets of [n]. For each such subset use
two accumulators:

1. Sum of the values of the cards seen so far.

2. Number of the cards from the set seen so far.

The memory needed for the two accumulators is just O(log n) bits. In fact, if the sets are of size
w, then just 2 logw bits are need, since you can do all the computation mod w.

If there is such a subset where all but one card appeared, then (a) We can detect it (b) The card
is a reasonable guess, in the sense that we know that it has not appeared before.

What if there are two such subsets? Then given that we assumed that the order of the cards is
random, it does not really matter which one is guessed (at least not for the expectation).

1In more detail, consider the polynomial PA(x) = Πa∈A(x − a) on the set A = {1, 2, . . . , n} over a finite field of
size at least n + k + 1. The algorithm is:

• Pick k + 1 many points x: n + 1, n + 2, . . . , n + k + 1, Evaluate PA(x) at these points and store each value
separately.

• As card y goes by: divide the value at point x = n + i by (n + i− y).

• When k many cards left: reconstruct the k degree polynomial using the k+! points, and recover the remaining
values.
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Subset construction: We consider all the subsets of the form [1−w] for w = 2i. I.e. the subsets
are:

[1− 1], [1− 2], [1− 4], [1− 8], [1− 16], [1− 32], . . . , [1− n]

If there is a subset (range) where a single card is missing, then this card is the current guess.

Property: In this construction there cannot be competing good cards to guess. For all k and k′:
if card j is the missing one from the set [1− k], then there cannot be a different one missing from
the set [1− k′].

Call a subset [1, w] useful if the last card from it that appears is not the last card in the next subset
[1, 2w]. Each subset contributed a good guess, but it could be that several subsets contributed the
same guess. However, if a subset is useful, then it is the only one to whom we attribute the good
guess. So the number of good guesses is simply the number of useful subsets. The probability that
a subset [1, w] is useful is precisely the probability that in the ‘next’ subset [1, 2w] the last card
does not come from [1, w]. This is (2w − w)/2w = 1/2.

The expected number of useful subset is therefore 1/2 log n and this is also the expected number
of good guesses.

One idea for improving this would be the to have the subsets (ranges) be denser (and have more
subsets). Suppose that ratio between two successive ranges is 1 + γ. Then there are log1+γ n such
subsets. The probability of a set being useful now (i.e. that its last member arriving does not
belong to a subset that contains it) is γ/(1 + γ). The expected number of useful sets is

γ

1 + γ
log1+γ n =

γ

(1 + γ)ln(1 + γ)
lnn.

This goes to lnn as γ goes to zero.

We can also add other subsets and keep track of them. The analysis will be harder. We can also
deduce missing cards by adding a few equations together.

A Different Approach: We will consider what are the chances that when we have i cards left,
for 1 ≤ i ≤ n that there is a reasonable guess at this point. That is that there is a card we know
that has not appeared before. In other words, that there is a subset with a single missing card.

Suppose that we construct random subsets with various probabilities: For each 1 ≤ j ≤ log n we
construct a subset Sj by picking each element independently with probability pj = 2j/n. At step
i what is the chance that there is a reasonable candidate? Let Ti be the set of unseen cards at the
point where i cards are left. To yield a reasonable guess i steps from the end, subset Sj should
intersect the set Ti at exactly one point. Pick blog n/ic ≤ j ≤ dlog n/ie. Now

Pr[|Sj ∩ Ti| = 1] = i · 2j

n

(
1− 2j

n

)i−1
.

For this value of j, we have that i · 2jn is between 1/2 and 1 and (1− 2j

n )i−1 is roughly 1/e. So we
get what we want with some constant probability,
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We have simple amplification in this case: we can use more sets for each j. Since each set is chosen
independently, the probability of failure goes down with the number of subsets. For any α > 0 we
can get to probability 1− α of at least one subset succeeding. The expectation of good guesses in
this case would (1− α) lnn using O(log(1/α) log n subsets.

In terms of memory, we will be using altogether m ∈ O(log(1/α) log2 n) bits.

Low Memory Case: What can we do if m is small, say m ≤ log2 n? In this case we can get
expectation of

√
m good guesses. We treat the domain as if it is of size 2

√
m, and ignore all other

cards! Now m = log2(2
√
m) and therefore we have enough memory to run the previous guesser.

2 Bounds on Best Possible Guessers

We show that the guessers of the previous section are the best possible low memory guessers, up
to constants.

Claim 2. Suppose that m = log2 n and β > 0. Then any algorithm using m bits of memory can
get on expectation (over the cards) at most

β lnn+ (1− β)
m

lnn

correct guesses. For β = (lnn)/m this is 2
√
m.

Proof idea: Use the guessing algorithm to encode an ordered set of size of t elements of of n with
fewer than log(n(n− 1 · · ·n− t+ 1)) bits. We will save around the order of the number of correct
guesses ` in last t steps using only m bits of memory.

Proof by Compression: a quite general method to prove success of an algorithm by showing that
failure allows us to compress the random bits used. We know that for any method the probability
of compressing and chopping off w bits from a random string is 2−w.

Example (not directly related): the “birthday paradox”. Suppose that you have k random elements
x1, x2, . . . xk from a domain of size n. When, can you expect collision, i.e. for what value of k as a
function of n. We note that if xi = xj , then it is possible can encode xj by pointing out to i (as
is done in the Lempel-Ziv family of compression algorithms). In such a case, instead of using log n
bits to encode xj we need only log k + log k bits. This saves (i.e. compresses) when k <

√
n, so we

conclude that it is not likely to happen before k ≥
√
n.

Homework. Let f : {0, 1}n 7→ {0, 1}n be a random function. Prove via compression that any
algorithm that has black-box access to f and receive y ∈ {0, 1}n and tries to find x ∈ {0, 1}n s.t.
f(x) = y must access f close to 2n times.

The method can be used to prove the run time of the algorithm in the “Algorithmic Lovasz Local
Lemma” and the success probability of Cuckoo Hashing.
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Proof of claim: Set t = n1−β. Simulate the guesser on a deck of card, where the first n− t cards
are from [n]\T and the t cards are ordered according to T . Record its memory (m bits) after the
first n − t steps and from that point on see when the guesser gives correct guesses. These can be
used to help describe T . Let the number of correct guesses be L (this is a random variable)2. Then
to record T , we note the location of the L places with a correct guess and provide the remaining
t − L missing values. So how many possibilities do we have? For the memory 2m, for the good
locations

(
t
L

)
and for the other values an ordered set of size t− L out of n.

The contradiction comes from counting the number of the ordered sets T in two different ways:
n(n− 1) · · · (n− t+ 1) all the possible options for ordered T and

(
t
L

)
·n(n− 1) · · · (n− t+L+ 1)2m

- upper bound on the possible options for ordered T according the encoding. So we have

n(n− 1) · · · (n− t+ 1) ≤
(
t

L

)
· n(n− 1) · · · (n− t+ L+ 1)2m (1)

∴ (n− t+ L)(n− t+ L− 1) · · · (n− t+ 1) ≤
(
t

L

)
· 2m (2)

∴ (n− t)L ≤ t` · 2m (3)

Taking logs we get

L ≤ m

ln(n− t)− ln t
≈ 1

β
· m

lnn
.

Suppose that the guesser is perfect in the first n − t steps, in the sense that all the guesses are
reasonable. Then the expected number of correct is is Hn −Ht = β lnn. So we get that the total
number of guesses is not expected to be better than β lnn + 1

β ·
m
lnn . Taking the best β to be√

m/ lnn, we get that this is not better than 2
√
m.

Note that this bound still holds even if the guesser has at it disposal a large amount of randomness
that it can repeatedly access (i.e. storing the randomness is not charged to the memory). So we
conclude with tight bounds up to constants:

Theorem 3. There is a guesser using m bits of memory that obtains 1/2 min{lnn,
√
m} correct

cards in expectation and any guesser using m bits of memory can get at most O(min{lnn,
√
m})

correct cards in expectation.

3 Open Problems and Directions

We have characterized to amount of memory needed for card guessing almost to the fullest. How-
ever, suppose we want to get (1− o(1)) lnn. Do we really need the extra factor of log(1/α), as in
the probabilistic contraction?

The most interesting direction is what happens in the adversarial case. We can think of three
relevant models for the adversary. In general we assume that the adversary knows the algorithm of
the guesser. Any randomness that the guesser repeatedly accesses should be stored in its memory

2Question: why is it sort of ok to refer to it as if it is a fixed value?
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(which is bounded in size by m), but on the fly randomness is free (e.g. guessing a card from a
range).

The most benign model is the non-adaptive case, where the adversary chooses the permutation on
the deck ahead of time. While some constructions would not work in this case, if you consider the
probabilistic one, then it naturally works for worst-case permutations, however, there is the issue of
representing the subsets themselves (since now we assume that the randomness in the construction
is per execution and not fixed once and for all). But the point is that we can show that we really
need just pair-wise independence in the construction in order to get the desired property that
the probability of an intersection being of size 1 is some constant (see for instance [4])3. So storing a
pairwise independent function per set (which can be done with O(log n) bits) can solve the problem.

Homework: analyze the adversarial non-adaptive case

A more powerful adversary to consider is one that sees the guesses made by the guesser and can
adapt the permutation on the cards as the sequence goes along. This is a similar model to the one
used against Bloom filters in [5].

Analyzing the power of such an adversary is the subject of Boaz Menuhin’s thesis work. A natural
algorithm for the adversary, suggested by Boaz Menuhin, is to put all the guesses at the end of the
deck (and shuffle it once in a while). This yields a lower bound of roughly O(log s).

The strongest adversary we consider is where the memory is wide open for the adversary to see.
This is the case for instance in the recent work of Ben-Eliezer and Yogev [1] on sampling. Each
subset on its own works just fine, but to work together you need that one subset finishes before the
second one starts being effective, and the adversary can make sure that this does not happen. So
again, we do not know the power of of such an adversary and whether it is more powerful that the
previous one.

A different direction is to figure out the connection with so called mirror games [3, 2]. These are
two player games where in the simplest case there is an even number of cards. The players take
turns saying a name of a card and a player loses if this card was mentioned already by either one
of the players. If all cards are finished, then it is a draw. The question is when can the first player
have a reasonable chance of drawing with little memory4 . Since it is a game, it is adversarial in
nature, but on the other hand, half of the sequence itself is determined by the other player.
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