
Randomized Algorithms 2020-1

Lecture 9

The Lovasz Local Lemma
∗

Moni Naor

1 Recap

We stated by recalling several models of communication complexity (e.g. the simultaneous message
model) and the complexity of the equality function in them. In general, with shared randomness
(where the inputs are chosen without access to the shared randomness) the efficiency is much better
(O(1)). Without shared randomness he complexity is Θ(

√
n) in the simultaneous message model

and Θ(log n) in the one-round model.

We reviewed the structure of proofs by compression or encoding that are relevant for both lower
bounds and upper bounds. In such a proof we consider a random string used in the system. This
could be the random function that should be inverted in the example of function inversion or
the randomness used by an algorithm (this will be the case with the Local Lemma). We then
show that the event we want to bound implies an encoding of the randomness which compresses
the representation. We know that the probability of compressing w bits (i.e. coming up with a
representation that is w bit shorter than the length in a way that allows us to retrieve the original
string) is at most 2−w. This allows us to bound the probability of the bad event by 2−w.

We also discussed Mirror Games and their relationship to card guessing [3, 2]. These are two player
games where in the simplest case there is an even number of cards. The players take turns saying a
name of a card and a player loses if this card was mentioned already by either one of the players. If
all cards are finished, then it is a draw. The second player has a low memory strategy by mirroring
the first player: fix a matching on the cards (e.g. the cards with the last bit flipped). For every
move by the first player, respond by the matched card. You can view the matching as providing a
subset in our setting and no bits need to be spent on it, since the current card indicates that the
other has not arrived yet.

What Garg and Schnieder showed is that there is no deterministic sublinear strategy for the first
player that is guaranteed to draw. The question is when can the first player have a reasonable
chance of achieving a draw with little memory. Since it is a game, it is adversarial in nature, but
on the other hand, half of the sequence itself is determined by the other player.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. In the interest of brevity, most references and credits were omitted.
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We mentioned that if there is a secret matching available to the first player, then this player can
use the matching most of the time, but from time to time will need to find and unused pair (in
case the second player hits the singleton). Te first player can apply the techniques of card guessing
in order to find out a vacant pair. The expected number of times this happens is roughly 1/2H2n.

2 The Local Lemma

The Union Bound allow us to argue that certain events have a non-zero probability of not occurring
simultaneously. Consider events U = {A1.A2, . . . Am}. For any event Ai the depdency on the other
events is arbitrary. We know that

Theorem 1. If there are 0 ≤ pi ≤ 1 s.t. Pr[Ai] ≤ pi and
∑m

i=1 pi < 1, then the probability that no
event Ai happens is positive.

If all the pi = p then we need that mp < 1.

An example of an application is a CNF formula with m clauses where each clause has more than
logm literals. Such a formula is necessarily satisfiable. Event Ai is clause i is not satisfied. Pr[Ai] <
1/m.

The Local Lemma allows us to make such arguments based on local considerations only. You can
read about in in either Alon-Spencer or Mitenmacher-Upfal.

We discussed two applications of the lemma. One was to argue that a CNF formula where every
clause is of size k and every variable appears at most 2k/ke clauses is necessarily satisfiable.

The proof we saw was non-constructive and for instance does not yield an algorithm that finds a
satisfying assignment to a CNF. Next time we will see the algorithmic version of Moser and Tardos.

3 Hat Guessing

We saw an application of the lemma to hat guessing. Hat guessing puzzles are very common, and
in recent years a variant related to graphs has become popular.

The following is taken almost verbatim from [4]. Suppose that n players are positioned on the
vertices of a finite, simple graph G. An adversary puts a colored hat on each of their heads, in
one of q colors. The players can only see the hats on their (immediate) neighbors’ heads, and in
particular no player sees their own hat. The players simultaneously guess the colors of their own
hats, and they collectively win if any single one of them guesses correctly. The players may not
communicate after the hat colors are assigned but may agree upon a strategy beforehand (and it
could be a different strategy for every node). The hat guessing number HG(G) of G is then the
largest q for which the players have a winning strategy in the game with q colors.

If there is at least one edge in the graph, then HG(G) ≥ 2. Why?

The classic case is when G = Kn, the complete graph on n vertices, and in this case HG(Kn) = n.
A winning strategy is for the i-th player to guess the hat color (identifying colors with values
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mod n) that would make the total of all the colors sum to i mod n. Exactly one player is correct
in its sum and hence this player will be correct in its guess. Also for trees T it is known that
HG(T ) = 2, see Butler, Hajiaghayi, Kleinberg, and Leighton[1].

We showed that in any graph with maximum degree ∆ we have that HG(G) ≤ e∆. In other words,
for every such graph, for every coloring strategy (which may specify for each node a different
strategy) show that there is way to color the nodes with no more than e∆ colors such that the
strategy fails: no node guesses its color correctly.

In more detail, let G = (V,E) be a graph and let the neighborhood of a node v ∈ V be N(v). The
strategy of the players is specified by a collection of functions, where for every node v there is a
mapping from the colors of the neighbors to a color (that is the guess given that the neighbors are
colored in certain way), fv : [q]|N(v)| 7→ [q]. For any possible coloring with q colors of the nodes
in V the strategist wants that there will be at lest one node v colored c with neighbors colored
c1, c2, . . . c|N(v)| s.t. fv(c1, c2, . . . c|N(v)|) = c.

We showed that if q > e∆ then there is no such strategy by the players.
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