
Randomized Algorithms 2021A – Lecture 3 (second part)

Electrical Networks*

Robert Krauthgamer

1 Electrical Networks

It turns out that random walks are “equivalent” to electrical networks (composed of resistors), and
this “physical” interpretation gives alternative ways to prove things. We first introduce the basic
concept.

Given an undirected graph G = (V,E), we think of it as an electrical circuit with unit resistors.
The basic property of electrical circuits is that current flows when there is a potential difference
(e.g., between the endpoints of a resistor).

What happens when two vertices are connected to the positive and negative terminals of a battery?
We create a “potential difference” between these two vertices, which induces a current (or electrical
flow) in the network, which satisfies the following laws:

Kirchhoff’s Current Law (KCL): At every vertex, the total incoming flow equals the total
outgoing flow.

We include here also flow that is injected to/extracted from the network. For example, injecting
one unit at s ∈ V and extracting one at t ∈ V , means that we ship a unit of flow from s to t.

In fact, this is just the well-known flow conversation constraint, and a function f that satisfies it is
called a flow.

Kirchhoff’s Voltage Law (KVL): The sum of potential differences along every (directed) cycle
is zero.

Remark: (KVL) explains why we call it “potential difference”. It implies that we can assign a
potential to each vertex, i.e., define ϕ′ : V → R, such that ϕuv = ϕ′

u−ϕ′
v for every edge. Obviously,

this map is unique up to translation (if G is connected).

Ohm’s Law: The current flowing from u to v through an edge {u, v} of resistance ruv is exactly
ϕuv

ruv
, where ϕuv is the potential difference on (the endpoints of) the resistor.

We assumed unit resistors, but in general, if G has edge weights, then each edge e would have
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resistance re = 1/we (i.e., its conductance is ce = 1/re = we), and this corresponds to a random
walk according to the edge weights, i.e., each outgoing edge is picked with probability proportional
to we.

Example: Suppose G is a path on 3 vertices u,w, v, and we create potential difference ϕuv. Then
by Ohm’s Law, then KCL, then Ohm’s Law,

ϕuw = fuwruw = fwvrwv = ϕwv.

Since the LHS and RHS sum up to ϕuv, each of them is exactly 1
2ϕuv, and thus fuw = fwv = 1

2ϕuv

is the amount of flow.

Observation: The amount of flow shipped from u to v scales linearly with ϕuv.

Observation: In fact, we can also add two potential-difference functions, and the flows will add
up (and vice versa).

Theorem 1 (Thomson’s Principle of minimum energy): Let f be a flow that ships a unit
flow from s to t, and has minimum total energy dissipation

E(f) =
∑
uv∈E

f2
uvruv

among all such flows. Then f is an electrical flow.

Proof: Was outlined in class (you are encouraged to complete the details). Given a flow f : E → R
that minimizes the energy dissipation, define ϕuv = fuvruv for every edge uv ∈ E. KVL and Ohm’s
Law hold by construction, and it remains to prove KCL. Now consider an arbitrary cycle, and add
δ units of flow along this (directed) cycle, to create another flow f ′. Now write E(f ′)−E(f) ≥ 0 in
terms of δ to conclude KCL.

Exer: Show that the minimizer f (flow that minimizes the energy) is attained uniquely.
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