Randomized Algorithms 2021A — Lecture 5 (second part)
Dimension Reduction in #5*

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let z,...,2, € R? and fix 0 < ¢ < 1. Then
there exist y1,...,y, € R¥ for k = O(¢ 2logn), such that
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Moreover, there is a randomized linear mapping L : R? — R* (oblivious to the given points), such
that if we define y; = Lz;, then with probability at least 1 — 1/n all the above inequalities hold.

Throughout, all norms are /o, unless stated otherwise.
Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensional space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact,
random signs £1 work too!

Since L is linear, Lz; — Lxzj = L(z; — x;), and it suffices to verify that L preserves the norm of
arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix § € (0,1) and let G € R¥*? be a random matrix of standard Gaussians,
for suitable k = O(¢~2log $). Then

v eR!,  Pr||Gu] ¢ is)\/Ean] < 6.
Using main lemma: Let L =G/ Vk, and recall we defined y; = Lz;. For every i < j, apply the
lemma to x; — x;, then with probability at least 1 - =1—-1/ n3,

lyi = yill = 1 L(2i = )| = |G(2i — )| /VE € (1 £&)||lzi — 2]

Now apply a union bound over (g) pairs.

QED
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It remains to prove the main lemma.

Fact 3 (the sum of Gaussians is Gaussian): Let X ~ N(0,0%) and Y ~ N(0,0%) be
independent Gaussian random variables. Then X +Y ~ N(0,0% + o2).

The proof is by writing the CDF function (integration), recall that PDF is \/%76*‘”2/2.

Corollary 4 (Gaussians are 2-stable): Let X,..., X, be independent standard Gaussians
N(0,1), and let 01,...,0, € R. Then Y, 0:X; ~ N(0,, 02).

Follows by induction.
Proof of main lemma: Was seen in class, using the next claim.

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y = Zle XZ-2 for indepen-
dent X1q,..., X, ~ N(0,1). Then

Ve € (0,1),  Pr[Y > (1+¢e)%k] < e k2

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim
5 to another random variable Y’ ~ 2. B(k, 1/2) which has the same expectation.

It remains to prove Claim 5, which we will see in the next class.



