
Sublinear Time and Space Algorithms 2022B – Lecture 10

Sublinear-Time Algorithms for Maximum Matching and Vertex

Cover∗

Robert Krauthgamer

1 Maximum Matching

Problem definition:

Input: An n-vertex graph G = (V,E) of maximum degree D, represented such that one has direct
access to the j-th neighbor of a vertex.

Definition: A matching is a set of edges that are incident to distinct vertices.

Goal: Compute the maximum size of a matching in G.

Note: The matching itself is too large to report in sublinear time, we only estimate its cost using
(α, β)-approximation, i.e., OPT ≤ ALG ≤ α OPT + β.

Theorem 1 [Nguyen and Onak, 2008]: There is an algorithm that gives (2, εn) approximation
to the maximum matching size in time DO(D)/ε2.

Main idea: It is well-known that maximal matching (note: maximal means with respect to con-
tainment) is a 2-approximation for maximum matching. We will pick one such matching almost
implicitly, and then estimate its size by sampling.

Algorithm GreedyMatching:

1. Start with an empty matching M .

2. Scan the edges (in arbitrary order), and add each edge to M unless it is adjacent to an edge
already in M .

Lemma 1a: The size of a maximal matching is at least half that of a maximum matching.

Proof: Exercise

Algorithm ApproxGreedyMatching:

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

1. choose random edge priorities p(e) ∈ [0, 1], implicitly defining a permutation of the edges

2. choose s = O(D/ε2) edges e1, . . . , es uniformly at random from the Dn possibilities (note that
each edge has two “chances” to be chosen, and some choices may lead to no edge, if the actual
degree is smaller than D)

3. for each edge ei, compute an indicator Xi for whether ei belongs to the maximal matching
corresponding to p, by exploring the neighborhood of ei incrementally

[stop if the algorithm took too many steps altogether]

4. report X = Dn
2s

∑
iXi

Running time: Let M be a greedy matching constructed according to the priorities p. As seen
in class, to determine whether a single ei ∈ M , we only “expect” to explore paths of length up to
k = O(D). Thus, the expected running time is O(s ·DcD) ≤ DO(D)/ε2, and by Markov’s inequality
there is small probability to exceed it by much.

Correctness: As seen in class, it follows by applying Chebychev’s inequality to X = Dn
2s

∑
iXi.

2 Vertex Cover in Planar Graphs via Local Partitioning

Problem definition:

Input: A graph G = (V,E) on n vertices. We shall assume G is planar, has maximum degree ≤ d,
and is represented using adjacency lists.

Definition: A vertex-cover is a susbet V ′ ⊂ V that is incident to every edge.

Goal: Estimate VC(G) = the minimum size of a vertex-cover of G.

Theorem 2 [Hassidim, Kelner, Nguyen and Onak, 2009]: There is a randomized algorithm
that, given ε > 0 and a planar graph G with maximum degree ≤ d, estimates whp VC(G) within
additive εn and runs in time T (ε, d) (independent of n).

Main idea: Fix “implicitly” some near-optimal solution. Then estimate it’s size by sampling s =
O(1/ε2) random vertices and checking whether they belong to that solution.

Initial analysis: Let SOL be the implicit solution computed by the algorithm, let Xi for i =
1, . . . , s = O(1/ε2) be an indicator for whether the i-th chosen vertex belongs to SOL. The algorithm
outputs n

s

∑
iXi. We will need to prove:

|SOL−VC(G)| ≤ εn
Pr[|ns

∑
iXi − SOL| ≤ εn] ≥ 0.9

The last inequality follows immediately from Chebychev’s inequality, since each Xi = 1 indepen-
dently with probability SOL/n.

Definition: We represent a partition of the graph vertices as P : V → 2V . It is called an (ε, k)-
partition if every part P (v) has size at most k, and at most ε|V | edges go across between different
parts.

2

Theorem 3: For every ε, d > 0 there is k∗ = k∗(ε, d) such that every planar G with max-degree
≤ d admits an (ε, k∗)-partition.

We will discuss its proof in the next class.

Our sublinear algorithm will actually not compute this partition directly, and instead will use local
computation to compute another partition (with somewhat worse parameters).

Proof Plan for Theorem 2: Given an (ε, k)-partition P of G, we define the solution SOL by
taking some optimal solution in each part of P , and adding one endpoint for each cross-edge. The
following lemma is immediate.

Lemma2a: VC(G) ≤ SOL ≤ VC(G) + εn.

The remaining (and main) challenge is to implement a partition oracle, i.e., an “algorithm” that
can compute P (v) for a queried vertex v ∈ V in constant time. Note: P could be random, but
should be “globally consistent” for the different queries v.

To be continued in the next class.

3

	Maximum Matching
	Vertex Cover in Planar Graphs via Local Partitioning

