Sublinear Time and Space Algorithms 2022B – Lecture 11 Sublinear-Time Algorithms for Planar Vertex Cover (cont'd)*

Robert Krauthgamer

1 Vertex Cover in Planar Graphs via Local Partitioning (cont'd)

Last week we stated the following theorem.

Theorem 3: For every $\varepsilon, d > 0$ there is $k^* = k^*(\varepsilon, d)$ such that every planar G with max-degree $\leq d$ admits an (ε, k^*) -partition.

It is proved using the famous Planar Separator Theorem (which we will not prove).

Planar Separator Theorem [Lipton and Tarjan, 1979]: In every planar graph G = (V, E) there is a set S of $O(\sqrt{|V|})$ vertices such that in $G \setminus S$, every connected component has size at most n/2.

Remark: It extends to excluded-minor families.

Exer: Prove Theorem 3 by using the planar separator theorem recursively. What k^* do you get?

Our sublinear algorithm will not compute this partition directly, and instead will use local computation to compute another partition P (with somewhat worse parameters). The remaining (and main) challenge is to design an algorithm that can compute P(v) for a queried vertex $v \in V$ in constant time. This is called a *partition oracle*. Note: P could be random, but should be "globally consistent" for the different queries v.

Algorithm Partition (used later as oracle):

Remark: It uses parameters k, ε' that will be set later (in the proof)

1. $P = \emptyset$

- 2. iterate over the vertices in a random order π_1, \ldots, π_n
- 3. if π_i is still in the graph then
- 4. if π_i has a (k, ε') -isolated neighborhood in the current graph
- 5. then S = this neighborhood
- 6. else $S = \{\pi_i\}$

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

7. add $\{S\}$ to P and remove S from the graph 8. output P

Definition: A (k, ε') -isolated neighborhood of $v \in V$ is a set $S \subset V$ that contains v, has size $|S| \leq k$, the subgraph induced on S is connected, and the number of edges leaving S is $e_{out}(S) \leq \varepsilon'|S|$.

Lemma 2b: Fix $\varepsilon' > 0$. Then a random vertex in G has probability at least $1 - 2\varepsilon'$ to have a $(k^*(\varepsilon'^2, d), \varepsilon')$ -isolated neighborhood.

Proof of Lemma 2b: Was seen in class, by considering the $(\varepsilon'^2, k^*(\varepsilon'^2, d))$ -partition guaranteed by Theorem 3.

Lemma 2c: For every $\varepsilon > 0$, Algorithm Partition above with parameters $\varepsilon' = \varepsilon/(12d)$ and $k = k^*(\varepsilon'^2, d)$ computes whp an (ε, k) -partition. Moreover, it can be implemented as a partition oracle (given a query vertex, it returns the part containing that vertex), whose running time (and query complexity into G) to answer q non-adaptive queries is whp at most $q \cdot 2^{d^{O(k)}}$.

Proof of Lemma 2c: By construction, the output P is a partition, where every part has size at most k.

To analyze the number of cross-edges in P, we define for each i = 1, ..., n two random variables related to π_i , as follows. Let $S_i = P(\pi_i)$, i.e. the set $S \in P$ that contains π_i (note it is removed from the graph in iteration i or earlier), and define $X_i = e_{out}'(S_i)/|S_i|$, where $e_{out}'(S_i)$ is the number of edges at the time of removing S_i . Notice that each $S \in P$ "sets" |S| variables X_i to the same value, thus $\sum_i X_i = \sum_{S \in P} e_{out}'(S)$ is the number of cross-edges in P (each edge is counted once, because the graph changes with the iterations).

Now fix *i*. Since π_i is a random vertex, by Lemma 2a, with probability $\geq 1 - 2\varepsilon'$, it has a (k, ε') isolated neighborhood in the input *G*, and also in later iterations (as that subgraph of *G* is planar
too), in which case $X_i \leq \varepsilon'$ (both if π_i is removed in iteration *i* and if in an earlier iteration). With
the remaining probability $\leq 2\varepsilon'$, we can bound $X_i \leq d$ which always holds. Altogether,

$$\mathbb{E}[X_i] \le 1 \cdot \varepsilon' + 2\varepsilon' \cdot d \le 3\varepsilon' d.$$
$$\mathbb{E}[\sum_i X_i] \le 3\varepsilon' dn.$$

By Markov's inequality, with probability $\geq 3/4$, the number of cross-edges in P is at most $4(3\varepsilon' dn) = \varepsilon n$.

Implementation as an oracle: We generate the permutation π on the fly by assigning each vertex v a priority $r(v) \in [0,1]$ (and remember previously used values). Before computing P(v), we first compute (recursively) P(w) for all vertices w within distance at most 2k from v that satisfy r(w) < r(v). (Note that a vertex w at distance 2k - 2 might affect v by causing removal of a vertex mid-way between v and w.) If $v \in P(w)$ for one of them, then P(v) = P(w). Otherwise, search (by brute-force) for a (k, ε') -isolated neighborhood of v, keeping in mind that vertices in any P(w) as above are no longer in the graph. Searching for an optimal vertex cover inside a part is done exhaustively.

Running time: We effectively work in an auxiliary graph H, where we connect two vertices if their distance in G is at most 2k. Thus, the maximum degree in H is at most $D = d^{2k}$. As seen earlier, this means the expected number of vertices inspected recursively is at most $D^{O(D)} = 2^{D^{O(1)}} = 2^{d^{O(k)}}$.