
Sublinear Time and Space Algorithms 2022B – Lecture 11

Sublinear-Time Algorithms for Planar Vertex Cover (cont’d)∗

Robert Krauthgamer

1 Vertex Cover in Planar Graphs via Local Partitioning (cont’d)

Last week we stated the following theorem.

Theorem 3: For every ε, d > 0 there is k∗ = k∗(ε, d) such that every planar G with max-degree
≤ d admits an (ε, k∗)-partition.

It is proved using the famous Planar Separator Theorem (which we will not prove).

Planar Separator Theorem [Lipton and Tarjan, 1979]: In every planar graph G = (V,E)
there is a set S of O(

√
|V |) vertices such that in G \ S, every connected component has size at

most n/2.

Remark: It extends to excluded-minor families.

Exer: Prove Theorem 3 by using the planar separator theorem recursively. What k∗ do you get?

Our sublinear algorithm will not compute this partition directly, and instead will use local com-
putation to compute another partition P (with somewhat worse parameters). The remaining (and
main) challenge is to design an algorithm that can compute P (v) for a queried vertex v ∈ V in
constant time. This is called a partition oracle. Note: P could be random, but should be “globally
consistent” for the different queries v.

Algorithm Partition (used later as oracle):

Remark: It uses parameters k, ε′ that will be set later (in the proof)

1. P = ∅
2. iterate over the vertices in a random order π1, . . . , πn
3. if πi is still in the graph then
4. if πi has a (k, ε′)-isolated neighborhood in the current graph
5. then S = this neighborhood
6. else S = {πi}

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

7. add {S} to P and remove S from the graph
8. output P

Definition: A (k, ε′)-isolated neighborhood of v ∈ V is a set S ⊂ V that contains v, has size |S| ≤
k, the subgraph induced on S is connected, and the number of edges leaving S is eout(S) ≤ ε′|S|.

Lemma 2b: Fix ε′ > 0. Then a random vertex in G has probability at least 1 − 2ε′ to have a
(k∗(ε′2, d), ε′)-isolated neighborhood.

Proof of Lemma 2b: Was seen in class, by considering the (ε′2, k∗(ε′2, d))-partition guaranteed
by Theorem 3.

Lemma 2c: For every ε > 0, Algorithm Partition above with parameters ε′ = ε/(12d) and
k = k∗(ε′2, d) computes whp an (ε, k)-partition. Moreover, it can be implemented as a partition
oracle (given a query vertex, it returns the part containing that vertex), whose running time (and

query complexity into G) to answer q non-adaptive queries is whp at most q · 2dO(k)
.

Proof of Lemma 2c: By construction, the output P is a partition, where every part has size at
most k.

To analyze the number of cross-edges in P , we define for each i = 1, . . . , n two random variables
related to πi, as follows. Let Si = P (πi), i.e. the set S ∈ P that contains πi (note it is removed from
the graph in iteration i or earlier), and define Xi = eout

′(Si)/|Si|, where eout
′(Si) is the number

of edges at the time of removing Si. Notice that each S ∈ P “sets” |S| variables Xi to the same
value, thus

∑
iXi =

∑
S∈P eout

′(S) is the number of cross-edges in P (each edge is counted once,
because the graph changes with the iterations).

Now fix i. Since πi is a random vertex, by Lemma 2a, with probability ≥ 1 − 2ε′, it has a (k, ε′)-
isolated neighborhood in the input G, and also in later iterations (as that subgraph of G is planar
too), in which case Xi ≤ ε′ (both if πi is removed in iteration i and if in an earlier iteration). With
the remaining probability ≤ 2ε′, we can bound Xi ≤ d which always holds. Altogether,

E[Xi] ≤ 1 · ε′ + 2ε′ · d ≤ 3ε′d.

E[
∑
i

Xi] ≤ 3ε′dn.

By Markov’s inequality, with probability ≥ 3/4, the number of cross-edges in P is at most
4(3ε′dn) = εn.

Implementation as an oracle: We generate the permutation π on the fly by assigning each vertex
v a priority r(v) ∈ [0, 1] (and remember previously used values). Before computing P (v), we
first compute (recursively) P (w) for all vertices w within distance at most 2k from v that satisfy
r(w) < r(v). (Note that a vertex w at distance 2k−2 might affect v by causing removal of a vertex
mid-way between v and w.) If v ∈ P (w) for one of them, then P (v) = P (w). Otherwise, search
(by brute-force) for a (k, ε′)-isolated neighborhood of v, keeping in mind that vertices in any P (w)
as above are no longer in the graph. Searching for an optimal vertex cover inside a part is done
exhaustively.

Running time: We effectively work in an auxiliary graph H, where we connect two vertices if their
distance in G is at most 2k. Thus, the maximum degree in H is at most D = d2k. As seen earlier,
this means the expected number of vertices inspected recursively is at mostDO(D) = 2D

O(1)
= 2d

O(k)
.

2

	Vertex Cover in Planar Graphs via Local Partitioning (cont'd)

