1 Communication Complexity

Model: Two parties, called Alice and Bob, receive inputs x, y respectively. They can exchange messages, in rounds, until one of them (or both) reports an output $f(x, y)$.

Main measure is communication complexity, i.e., total communication between the parties (in bits, worst-case).

Variants of randomization: none (deterministic), shared/public, or private.

Number of rounds: zero (simultaneous, i.e., each sends a message to a referee and not directly to each other), one (one-way communication), or more/unbounded.

Many other variants, like more players communicating in series (or broadcast etc.), with different input model (e.g., number on forehead instead of number in hand).

Equality as an Example:

Problem definition: Alice and Bob’s inputs are $x, y \in \{0, 1\}^n$, and their goal is to compute $EQ(x, y) = 1_{\{x = y\}}$.

Public randomness: There is a (simultaneous) protocol with $O(1)$ bits.

Private randomness: There is a (one-way) protocol with $O(\log n)$ bits.

Deterministic one-way: Every protocol requires $\Omega(n)$ communication bits.

2 Indexing

Problem definition: Alice has input $x \in \{0, 1\}^n$ and Bob has as input an index $i \in [n]$. Their goal is to output $INDEX(x, i) = x_i$.

These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.
This function would be easy if Bob could send his (short) input to Alice. But we shall consider one-way communication from Alice to Bob, and her input is much longer.

Theorem 1 [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication complexity of indexing is $\Omega(n)$, even with shared randomness.

It’s therefore a “canonical” problem for reductions (in this model).

We skipped the proof of this theorem (those interested can find a simple proof by [Jayram, Kumar and Sivakumar, 2008] that uses an error correcting code and some averaging arguments).

3 Streaming Lower Bounds: Exact ℓ_0

Theorem 2: Every streaming algorithm for computing ℓ_0 exactly in \mathbb{R}^n, even a randomized one with error probability $1/6$, requires storage of $\Omega(n)$ bits.

Remark: This is true even for insertions-only streams.

Proof: Was seen in class, by reduction from the indexing problem.

Remark: Notice that our proof works even if random coins are not counted in the storage of the streaming algorithm (because we rely on a communication lower bound with public coins).

Exer: Show a similar lower bound for exact ℓ_1.

Hint: You obviously must use a stream with deletions.

Exer: Prove that every streaming algorithm for graph connectivity on n vertices (i.e., deciding whether a stream of edge-insertions gives a connected graph), even a randomized one with error probability $1/3$, requires storage of $\Omega(n)$ bits.

4 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob’s inputs are $x, y \in \{0, 1\}^n$, respectively, and their goal is to determine whether the hamming distance between x, y is $\leq \frac{n}{2} - \sqrt{n}$ or $\geq \frac{n}{2} + \sqrt{n}$.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is $\Omega(n)$, even with shared randomness.

We skipped the proof of this theorem (those interested can find a proof by [Jayram, Kumar and Sivakumar, 2008] that uses a reduction from Indexing).

We mention in passing a stronger result, where the number of rounds is unbounded.

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded number of rounds) of GHD is $\Omega(n)$, even with shared randomness.
5 Streaming Lower Bounds: Approximate ℓ_0

Theorem 4: Every streaming algorithm that $(1 + \varepsilon)$-approximates ℓ_0 in \mathbb{R}^n for $1/\sqrt{n} \leq \varepsilon < 1$, even a randomized one with error probability $1/6$, requires storage of $\Omega(1/\varepsilon^2)$ bits.

Remark: For smaller $0 < \varepsilon < 1/\sqrt{n}$, the required storage is $\Omega(n)$; to see this, observe that an algorithm for such “smaller” ε “solves” $\varepsilon = 1/\sqrt{n}$ which is covered by the above theorem.

We skipped the proof of this theorem (for those interested, it is by reduction from GHD).

6 Current Research Directions

We concluded with a brief mention of research topics related to the course.

Streaming matrices: Different update models, different problems

Streaming (and sampling) edit distance: Different models of the input

Fast algorithms: in classic sense, like near-linear time

Dynamic algorithms: fast update time (no space constraints)