Sublinear Time and Space Algorithms 2022B – Lecture 2 Reservoir Sampling, Frequency Vectors, Distinct Elements, Frequency Moments and the AMS algorithm*

Robert Krauthgamer

1 Reservoir Sampling

Problem definition: Pick a uniformly random item from the stream.

Reservoir Sampling [Vitter, 1985]:

- 1. Init: s = null
- 2. Update: When the next item σ_j is read, toss a biased coin and with probability 1/j let $s = \sigma_j$ in the stream (note we need to maintain j)
- 3. Output: s

Lemma: Assuming every $\sigma_j \in [n]$, this algorithm uses storage $O(\log(n+m))$ and its output is a uniform item from the stream, i.e., each position j is picked (and outputted) with the same probability 1/m.

Note that items appearing many times are output with high probability.

Exer: Prove this lemma.

Exer: Design a streaming algorithm that at every time m (not known in advance) receives a query $S \subset [n]$ and outputs an estimate what fraction of items in the stream belong to S within additive error ϵ . Note that S is given only at query time (not in advance).

Hint: Maintain $O(1/\epsilon^2)$ random samples and use them to estimate the fraction in S.

Exer: Design an algorithm that samples s items without replacement from an input stream $\sigma = (\sigma_1, \ldots, \sigma_m)$. The algorithm's memory requirement should be O(s) words (s is a parameter known in advance). Prove that the algorithm's output has the correct distribution.

Hint: The goal is essentially to sample s distinct indices $(i_1 < \cdots < i_s)$ uniformly at random. In contrast, executing the Reservoir Sampling algorithm s times in parallel gives k samples with

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

replacement, i.e., the same $i \in [m]$ could be reported more than once.

2 Frequency-vector model

A famous and common setting for data-stream problems lets the input be a stream of m items from a universe $[n] = \{1, \ldots, n\}$; the stream $\sigma = (\sigma_1, \ldots, \sigma_m)$ implicitly defines a frequency vector $x \in \mathbb{R}^n$, where coordinate x_i counts the frequency of item $i \in [n]$ in the stream.

Example: The sequence of IP addresses observed by a router. Here, $n=2^{32}$ is huge but the vector x is sparse (many zeros).

Remark: In this setting, it is common to assume m = poly(n), hence one machine word can store value in the ranges [n] and [m]. The usual goal is to achieve storage requirement polylog(n).

Example Problems: Two classical computational problems ask for the most frequent item and for the number of distinct items, which can be expressed in terms of the frequency vector x as $||x||_{\infty}$ and $||x||_{0}$, respectively.

Suppose we are guaranteed that one item appears more than half the time, i.e., there exists (unknown) $i \in [n]$ such that $x_i > m/2$. Design a streaming algorithm with $O(\log n)$ storage that finds this item i. Hint: Store only two items.

Can you provide a $(1 + \epsilon)$ -approximation to its frequency? Can you extend it from 2 to every k (i.e., frequency > m/k)?

Variations and further questions (we will discuss only some of these):

- $||x||_0$ (distinct elements)
- heavy hitters ($||x||_{\infty}$ when it is guarantee to be "large")
- $||x||_2$ (reflects the probability that two random items from the stream are equal)
- more generally $||x||_p$
- ℓ_p -sampling
- item deletions (turnstile updates to x), now even $||x||_1$ is interesting
- sliding window (always refer to the w most recent items, for a parameter w known in advance)
- multiple passes over the input

3 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and let $||x||_0 = |\{i \in [n] : x_i > 0\}|$ be the number of distinct elements in the stream. It's also called the F_0 -moment of σ .

Naive algorithms: Storage O(n) (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a "hash" function $h:[n] \to [0,1]$ where each h(i) has an independent uniform distribution on [0,1]. (This is an "idealized" description, because even though we can generate n truly random bits, we cannot store and re-use them.)

Idea: We will see exactly $d^* = ||x||_0$ distinct hashes, and since they are random, by symmetry their minimum should be around $1/(d^* + 1)$.

- 1. Init: z = 1 and a hash function h
- 2. Update: When item $i \in [n]$ is seen, update $z = \min\{z, h(i)\}$
- 3. Output: 1/z 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues later.

Denote by $d^* := ||x||_0$ the true value, and let Z denote the final value of z (to emphasize it is a random variable).

Lemma 1:
$$\mathbb{E}[Z] = 1/(d^* + 1)$$
.

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward). Choose an additional random value X uniformly from [0,1] (for sake of analysis only), then by the law of total expectation

$$\mathbb{E}[Z] = \underset{Z}{\mathbb{E}}[\Pr_X[X < Z \mid Z]] = \underset{Z}{\mathbb{E}}[\mathbb{E}[\mathbb{1}_{\{X < Z\}} \mid Z]] = \mathbb{E}[\mathbb{1}_{\{X < Z\}}] = 1/(\operatorname{d}^* + 1).$$

Lemma 2:
$$\mathbb{E}[Z^2] = \frac{2}{(d^*+1)(d^*+2)}$$
 and thus $\operatorname{Var}[Z] \leq (\mathbb{E}[Z])^2$.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

- 1. Run $k = O(1/\varepsilon^2)$ independent copies of algorithm FM, keeping in memory Z_1, \ldots, Z_k (and functions h^1, \ldots, h^k)
- 2. Output: $1/\bar{Z} 1$ where $\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i$

As before, averaging reduces the standard deviation by factor \sqrt{k} , and then applying Chebyshev's inequality to \bar{Z} , WHP

$$\bar{Z} \in (1 \pm 3/\sqrt{k}) \mathbb{E}[Z] = (1 \pm 3/\sqrt{k}) \cdot 1/(d^* + 1)$$

in which case its inverse is $1/\bar{Z} \in (1 \pm \varepsilon)(d^* + 1)$.

Storage requirement: $O(k) = O(1/\varepsilon^2)$ words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a $(1 + \varepsilon)$ -approximation of z, which can reduce the number of bits from $O(\log n)$ (in a "typical"

implementation of the real-valued hashes) to $O(\log\log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z's binary representation.

Remark: Notice this algorithm does not work under deletions.