1 Reservoir Sampling

Problem definition: Pick a uniformly random item from the stream.

Reservoir Sampling [Vitter, 1985]:

1. Init: $s = \text{null}$
2. Update: When the next item σ_j is read, toss a biased coin and with probability $1/j$ let $s = \sigma_j$ in the stream (note we need to maintain j)
3. Output: s

Lemma: Assuming every $\sigma_j \in [n]$, this algorithm uses storage $O(\log(n + m))$ and its output is a uniform item from the stream, i.e., each position j is picked (and outputted) with the same probability $1/m$.

Note that items appearing many times are output with high probability.

Exer: Prove this lemma.

Exer: Design a streaming algorithm that at every time m (not known in advance) receives a query $S \subset [n]$ and outputs an estimate what fraction of items in the stream belong to S within additive error ϵ. Note that S is given only at query time (not in advance).

Hint: Maintain $O(1/\epsilon^2)$ random samples and use them to estimate the fraction in S.

Exer: Design an algorithm that samples s items without replacement from an input stream $\sigma = (\sigma_1, \ldots, \sigma_m)$. The algorithm’s memory requirement should be $O(s)$ words (s is a parameter known in advance). Prove that the algorithm’s output has the correct distribution.

Hint: The goal is essentially to sample s distinct indices ($i_1 < \cdots < i_s$) uniformly at random. In contrast, executing the Reservoir Sampling algorithm s times in parallel gives k samples with
replacement, i.e., the same $i \in [m]$ could be reported more than once.

2 Frequency-vector model

A famous and common setting for data-stream problems lets the input be a stream of m items from a universe $[n] = \{1, \ldots, n\}$; the stream $\sigma = (\sigma_1, \ldots, \sigma_m)$ implicitly defines a frequency vector $x \in \mathbb{R}^n$, where coordinate x_i counts the frequency of item $i \in [n]$ in the stream.

Example: The sequence of IP addresses observed by a router. Here, $n = 2^{32}$ is huge but the vector x is sparse (many zeros).

Remark: In this setting, it is common to assume $m = \text{poly}(n)$, hence one machine word can store value in the ranges $[n]$ and $[m]$. The usual goal is to achieve storage requirement $\text{polylog}(n)$.

Example Problems: Two classical computational problems ask for the most frequent item and for the number of distinct items, which can be expressed in terms of the frequency vector x as $\|x\|_\infty$ and $\|x\|_0$, respectively.

Suppose we are guaranteed that one item appears more than half the time, i.e., there exists (unknown) $i \in [n]$ such that $x_i > m/2$. Design a streaming algorithm with $O(\log n)$ storage that finds this item i. Hint: Store only two items.

Can you provide a $(1 + \epsilon)$-approximation to its frequency? Can you extend it from 2 to every k (i.e., frequency $> m/k$)?

Variations and further questions (we will discuss only some of these):

- $\|x\|_0$ (distinct elements)
- heavy hitters ($\|x\|_\infty$ when it is guarantee to be “large”)
- $\|x\|_2$ (reflects the probability that two random items from the stream are equal)
- more generally $\|x\|_p$
- ℓ_p-sampling
- item deletions (turnstile updates to x), now even $\|x\|_1$ is interesting
- sliding window (always refer to the w most recent items, for a parameter w known in advance)
- multiple passes over the input

3 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^n$ be the frequency vector of the input stream, and let $\|x\|_0 = |\{i \in [n] : x_i > 0\}|$ be the number of distinct elements in the stream. It’s also called the F_0-moment of σ.

Naive algorithms: Storage $O(n)$ (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.
Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function \(h : [n] \rightarrow [0,1] \) where each \(h(i) \) has an independent uniform distribution on \([0,1]\). (This is an “idealized” description, because even though we can generate \(n \) truly random bits, we cannot store and re-use them.)

Idea: We will see exactly \(d^* = \|x\|_0 \) distinct hashes, and since they are random, by symmetry their minimum should be around \(1/(d^* +1) \).

1. Init: \(z = 1 \) and a hash function \(h \)
2. Update: When item \(i \in [n] \) is seen, update \(z = \min\{z, h(i)\} \)
3. Output: \(1/z - 1 \)

Storage requirement: \(O(1) \) words (not including randomness); we will discuss implementation issues later.

Denote by \(d^* := \|x\|_0 \) the true value, and let \(Z \) denote the final value of \(z \) (to emphasize it is a random variable).

Lemma 1: \(\mathbb{E}[Z] = 1/(d^* +1) \).

Note: This is the expectation of \(Z \) and not of its inverse \(1/Z \) (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward). Choose an additional random value \(X \) uniformly from \([0,1]\) (for sake of analysis only), then by the law of total expectation

\[
\mathbb{E}[Z] = \mathbb{E}[\mathbb{P}_Z[X < Z] | Z] = \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{X < Z\}} | Z]] = \mathbb{E}[\mathbb{1}_{\{X < Z\}}] = 1/(d^* +1).
\]

Lemma 2: \(\mathbb{E}[Z^2] = \frac{2}{(d^* +1)(d^* +2)} \) and thus \(\text{Var}[Z] \leq (\mathbb{E}[Z])^2 \).

Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run \(k = O(1/\varepsilon^2) \) independent copies of algorithm FM, keeping in memory \(Z_1, \ldots, Z_k \) (and functions \(h^1, \ldots, h^k \))
2. Output: \(1/\bar{Z} - 1 \) where \(\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i \)

As before, averaging reduces the standard deviation by factor \(\sqrt{k} \), and then applying Chebyshev’s inequality to \(\bar{Z} \), WHP

\[
\bar{Z} \in (1 \pm 3/\sqrt{k}) \mathbb{E}[Z] = (1 \pm 3/\sqrt{k}) \cdot 1/(d^* +1)
\]

in which case its inverse is \(1/\bar{Z} \in (1 \pm \varepsilon)(d^* +1) \).

Storage requirement: \(O(k) = O(1/\varepsilon^2) \) words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a \((1 + \varepsilon) \)-approximation of \(z \), which can reduce the number of bits from \(O(\log n) \) (in a “typical”
implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z’s binary representation.

Remark: Notice this algorithm does not work under deletions.