
Sublinear Time and Space Algorithms 2022B – Lecture 4

Amplifying Success Probability, `2 Point Queries, and Hash

Functions∗

Robert Krauthgamer

1 Amplifying Success Probability

To amplify the success probability of Algorithm CountMin (in general case), we use median of
independent repetitions (instead of minimum), and analyze it using the standard concentration
bounds, as follows.

Theorem 1 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for `1 point
queries that uses a linear sketch of dimension O(α−1 log n) (which implies that its memory require-
ment is this number of words) to achieve accuracy α ∈ (0, 1) with success probability 1− 1/n2.

Algorithm CountMin++:

1. Run k = O(log n) independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: To estimate xi report the median of all basic estimates, i.e., x̂i = median{x̃li : l ∈ [k]}

Lemma:

Pr[x̂i ∈ xi ± α‖x‖1] ≤ 1/n2.

Proof: as seen in class, we define an indicator Yl for the event that copy l ∈ [k] succeeds, then use
one of the concentration bounds below.

Chernoff-Hoeffding concentration bounds: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n]
are independently distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t
2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements (say from constant to 1− 1/n2).

Hint: use independent repetitions + median.

2 `2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate
with error proportional to ‖x‖2 instead of ‖x‖2.

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate `2 point queries
within error α with constant high probability, using a linear sketch of dimension O(α−2). It implies,
in particular, a streaming algorithm.

It achieves better accuracy than CountMin (`2 instead of `1), but requires more storage (1/α2

instead of 1/α).

Algorithm CountSketch:

1. Init: Set w = 4/α2 and choose a hash function h : [n]→ [w]

2. Choose random signs r1, . . . , rn ∈ {−1,+1}

3. Update: Maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi.

4. Output: To estimate xi return x̃i = ri · Sh(i).

Storage requirement: O(w) = O(α−2) words, not counting storage of the random bits.

Correctness: We saw in class that Pr[|x̃i − xi|2 ≥ α2‖x‖22] ≤ 1/4, i.e., with high (constant)
probability, x̃i ∈ xi ± α‖x‖2.

Exer: Explain how to amplify the success probability to 1 − 1/n2 using the median of O(log n)
independent copies.

3 Hash Functions

Idea: The idea is to replace a truly random function h : [n]→ [n] with something that is easier to
store. As a running example, consider hp,q(i) = pi+ q (mod n), where p, q are chosen at random.
This can also be viewed as choosing h from a family H = {hp,q : p, q}.

To analyze these families formally, we need some definitions.

Independent random variables: Recall that two (discrete) random variables X,Y are inde-
pendent if

∀x, y Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

2

This is equivalent to saying that the conditioned random variable X|Y has exactly the same dis-
tribution as X. It implies that in particular E[XY] = E[X] · E[Y].

The above naturally extends to k > 2 variables, and then we say the random variables are mutually
(or fully) independent.

Pairwise independence: A collection of random variables X1, . . . , Xn is called pairwise inde-
pendent if for all i 6= j ∈ [n], the variables Xi and Xj are independent.

Example: Let X,Y ∈ {0, 1} be random and independent bits, and let Z = X ⊕ Y . Then X,Y, Z
are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X1, . . . , Xn are pairwise independent, the variance Var(
∑

iXi) is exactly the
same as if they were fully independent, because

Var(
∑
i

Xi) = E[(
∑
i

Xi)
2]− (E[

∑
i

Xi])
2 =

∑
i,j

E[XiXj]− (
∑
i

E[Xi])
2.

Consequently (and this is well-known): If X1, . . . , Xn are pairwise independent (and have finite
variance), then Var(

∑
iXi) =

∑
i Var(Xi).

The above definition extends to k-wise independence, where every subset of k random variables
should be independent.

Pairwise independent hash family: A family H of hash functions h : [n] → [M] is called
pairwise independent if for all i 6= j ∈ [n],

∀x, y ∈ [M] Pr
h∈H

[h(i) = x, h(j) = y] = Pr[h(i) = x] · Pr[h(j) = y].

This is the same as saying that h(1), . . . , h(n) are pairwise independent (when choosing random
h ∈ H).

A common scenario is that each h(i) is uniformly distributed over [M], although this is not required
in the above definition.

Universal hashing: A family H of hash functions h : [n] → [M] is called 2-universal if for all
i 6= j ∈ [n],

Pr
h∈H

[h(i) = h(j)] ≤ 1/M.

Observe that 2-universality is weaker than (follows from) pairwise independence when each h(i) is
distributed uniformly over [M], but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume M ≥ n and that M is a prime number (if not, we can pick a larger M that is a prime).
Pick random p, q ∈ {0, 1, 2, . . . ,M − 1} = [M] and set accordingly hp,q(i) = pi+ q (mod M).

The family H = {hp,q : p, q} is pairwise independent because for all i 6= j and all x, y,

Pr
h∈H

[h(i) ≡ x, h(j) ≡ y] = Pr
p,q

[(
i 1
j 1

)
(p
q) ≡ (x

y)
]

= Pr
p,q

[
(p
q) ≡

(
i 1
j 1

)−1
(x
y)
]

= 1
M2 ,

3

where we relied on the above matrix being invertible.

Storing a function hp,q from this family can be done by storing p, q, which requires log |H| =
O(logM) bits. In general, log |H| bits suffice to store an index of h ∈ H.

One can reduce the size of the range [M] (from large M ≥ n to M = 2 or say 4/α), with a small
overhead/loss.

4

	Amplifying Success Probability
	2 Point Query via CountSketch
	Hash Functions

