
Sublinear Time and Space Algorithms 2022B – Lecture 5

Adversarially Robust Streaming, Flip-Number and Sparse-Dense

Tradeoff∗

Shay Sapir

1 Adversarially Robust Streaming Algorithms

Let us consider tracking algorithms, which track a function throughout the stream updates.

Tracking algorithms: Let x(t) be the frequency vector after t updates. An algorithm is said to
be (ε, δ)-strong ℓ2-tracking if w.p. 1− δ it outputs an estimate Rt ∈ (1± ε)∥x(t)∥2 for all t ∈ [m].

Exer: Design a (ε, δ)-strong ℓ2-tracking algorithm using O(ϵ2 log(n/δ)) words.

Hint: amplify AMS to success probability 1− δ/m.

In the setting that we discussed until this point, the stream was fixed in advance. Let us now
consider streams that may change according to the output of the algorithm (which corresponds to
interactions with the environment).

Adaptive streams: For t = 1, ...,m,

1. Adversary chooses the next stream update σt.

2. Streaming algorithm process σt and outputs an estimate Rt.

3. Adversary observes Rt.

Algorithms in this model that satisfy the tracking property are called Adversarially Robust.

[Hardt-Woodruff, 2013]: Adversarially robust linear sketches for ℓ2-norm have sketching di-
mension Ω(n).

Intuition: the adversary can use the observations to learn the sketching matrix A, and then
query a non-zero vector x such that Ax = 0. The algorithm then must report the same output for
x and 2x.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



2 Flip Number and Sketch Switching

Theorem 1 [Ben-Eliezer,Jayaram,Woodruff,Yogev,2020]: In insertion-only streams, there
is an adversarially robust algorithm for ℓ2-norm using Õ(ε−3) bits of space.

Flip number [BJWY20]: For a function f and stream σ, the flip number λε(f, σ) is the size
k of the largest subsequence 1 ≤ t1 ≤ ... ≤ tk ≤ m such that f(x(ti)) /∈ (1 ± ε)f(x(ti+1)) for all
i ∈ [k − 1]. The flip number of f is λε(f) = maxσ{λε(f, σ)}.

Lemma 2: In insertion-only streams, λε(∥·∥2) = O(ε−1 log n).

Proof: Was seen in class.

Algorithm Sketch Switching:

1. Init: ρ = 1, g = 0.

2. run λ = λε/8(∥·∥2) ind. copies of an (ε/8, δ/λ)-strong ℓ2-tracking algorithm, denotedA1, ..., Aλ.

3. update y as the current output of Aρ.

4. if g /∈ (1± ε/2)y, then set g = y and increment ρ.

5. output g.

Steps 2-5 happen for every stream update.

Space: Õ(ϵ−2λ).

Analysis: We can assume the adversary is deterministic (Yao’s principle). Why? Consider
randomized adversary s.t. the algorithm fails w.p. p (over the randomness of alg + adversary).
Then by an averaging argument, there is at least one choice for the randomness of the adversary
for which the streaming algorithm fails w.p. p. Fix that randomness.

Let t1 be the time-step when the ”if condition” was fulfilled for ρ, hence from this time on, the
algorithm ”switches” to Aρ+1. Let y1 = Aρ(t1). Consider the stream that would be if the output
is always y1. For this output, the adversary responds with a stream that is independent of Aρ+1.
Hence Aρ+1 is correct w.p. 1− δ/λ until the next time that the ”if condition” is fulfilled.

Exer: Assuming that the ”active” Aρ always output a (1 + ε/8)-approximation of the ℓ2-norm,
prove that the ”if condition” is fulfilled at most λε/8(∥·∥2) times.

3 Streams with deletions

λ can be as large as m if there are many insertions + deletions to the same coordinate, which
corresponds to a sparse vector.

2



Theorem 3: There is an adversarially robust streaming algorithm for ℓ2-norm using Õε(m
2/3)

bits of space.1

This is based on [Ben-Eliezer,Eden,Onak, 2022], who achieved a better bound of Õε(m
2/5) bits of

space. They use differential privacy for this improvement, which was not discussed in class. Finding
the tight bounds is an open question.

Sparse Recovery:

Input: x is a k-sparse vector.

Goal: recover x exactly using a linear sketch of dimension Õ(k).

Exer: Show that CountMin/CountSketch with Õ(k) buckets solve Sparse Recovery.

High level algorithm of Theorem 3:

• If x is T -sparse, then maintain it explicitly.

• If x is T -dense (not sparse), then use the Sketch Switching algorithm.

• Use Sparse Recovery algorithm to recover x when it becomes sparse (after being dense).

Lemma: The flip number for the ℓ2-norm of T -dense vectors is bounded by Oε(m/
√
T ).

Proof: was seen in class.

Space: the Sparse Recovery algorithm uses Õ(T ) bits, and the Sketch Switching uses Õε(m/
√
T )

bits of space. Pick T = m2/3, resulting in the desired space bound.

One may need to track the number of non-zeros in x in order to decide if the regime is sparse or
dense. This was not discussed in class, and can be done using a Distinct Elements algorithm for
streams with deletions, and by a slight change of the algorithm: make it such that if x is 2T -dense
then we use Sketch Switching, and if ∥x∥0 ∈ [T, 2T ], then either maintain it explicitly or use Sketch
Switching.

1The notation Õε(·) hides multiplicative factor poly(ε, logn).

3


	Adversarially Robust Streaming Algorithms
	Flip Number and Sketch Switching
	Streams with deletions

