Sublinear Time and Space Algorithms 2022B — Lecture 6
Dynamic Geometric Streams and Euclidean MST*

Robert Krauthgamer

1 Dynamic Geometric Streams

Geometric stream: The input is a stream of points in R? denoted P = (p1,...,p,). We usually
think of low dimension, even d = 2, and a very long stream.

The above is an insertion-only stream, but we may allow deletions of points and then it is called
dynamic.

Representation: We assume a machine word can store a point and count the number of points.
We thus often restrict the points to come from an integer grid [A]?, and for convenience also n < A%
(e.g., the points are distinct). Thus, a word has O(log(A? 4+ n)) = O(dlog A) bits.

Problem definition: The goal could be to solve some optimization problem over P, for example
in the diameter problem, the goal is compute diam(P) = max, ycp|p — P’

Theorem 1 (Diameter): In an insertion-only geometric streams, the diameter problem admits
2-approximation using storage of O(1) words.

Proof: The algorithm stores the first point seen pq, and also the point p; farthest from it so far. It
outputs the distance between these two points. This is the radius of P around p;, and clearly

3 diam(P) < output < diam(P).

Open: Similar performance, namely O(1)-approximation with storage that is polynomial in d, in
dynamic streams?

MST problem: In the Minimum Spanning Tree (MST) problem, we view the points as forming
a complete graph with edge weights representing Euclidean distances, and the goal is compute a
tree (or connected subgraph) of minimum weight, denoted MST(P).

We focus on approximating the value/cost (not reporting a tree).

Exer: Prove that MST(P) is also the cost of single-linkage clustering, an iterative clustering that
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starts with each point as its own cluster, then repeatedly connects two clusters that have closest
to each other.

Theorem 2 [Indyk 2004]: There is a streaming algorithm for O(dlog A)-aproximation of MST
using storage of (dlog A)°() bits.

The presentation focuses on the case d = 2 for simplicity, the generalization is straightforward.

Idea: Map the grid into a hierarchical tree, then solve MST in this tree using algorithms for the
vector-frequency model.

Quadtree: Partition the grid [A]? recursively, partitioning each square into 4 equal-size squares.
(For general d, the word square should be replaced by cube or cell.)

This can be represented as a quadtree, which is 4-regular tree with O(log A) levels, where each tree
node at level i = 0,...,log A is a 2 x 2! square. In particular, the root represents the entire grid,
and each leaf represents a 1 x 1 square, i.e., a grid point.

We let tree edges have weights, where an edge between square at level ¢ and its parent at level i 41
has weight 2¢+1 Why? This is the diameter of the smaller square (or a slight overestimate), and
thus enough to travel from the “center” of the small square to the “center” of its parent square.
Note that for general d, we would use vd2".

Lemma 3: Denote the quadtree by 7', and distances in it by dr. Recall that grid points are
leaves in T'. Then

Vp,q € [A]%,  dr(p,q) > llp —ql|.

For intuition, assume for now that tree distances are a good approximation to the grid distances,
ie., dr(p,q) = O(1) - ||p — ¢||- We will see later that the approximation is worse and holds only in
expectation.

MST inside quadtree T: Let MST7(P) denote the MST cost of the points P under distances
dr (equivalently, view P as leaves of T' and compute MST inside T').

Lemma 4: There is a streaming algorithm that, given a stream of grid points P, viewed as leaves
of T, computes (1 + £)-approximation of MST7(P) using storage of (¢~ 'dlog A)°() bits.

Algorithm QuadtreeMST:
Idea: It’s enough to count how many squares are non-empty at each level

1. For each level i = 0,...,log A, run a Distinct Elements (DE) algorithm over the squares (tree
nodes) at level i, and denote its frequency vector 2 e R(A/2)?,

2. Update (insert/delete p): update the square containing p at each DE algorithm, i.e., each z(%),
3. Output: compute DE estimates % € (1 +¢)|2®|o, and report 3, Lyz>15 % - 270

Remark: Make sure each DE algorithm has small error probability, say at most 1/(8log A).
Proof of Lemma 4: Was seen in class.

Shifted quadtree: Suppose that we translate P by a random amount, namely pick uniformly ran-



dom r € [A]? and it to all of P, and then compute a partitioning/quadtree on [2A]¢. Equivalently,
compute a recursive partitioning of [2A]d and translate its squares by —r.

Probabilistic tree metric: Each leaf of T still represents a 1 x 1 square, i.e., a grid point. Thus,
for every p,q € P, their tree distance dp(p, q) is a random variable.

Lemma 5: Let T be a shifted quadtree. Then

¥p,q € [A]Y, Eldr (p. q)] < O(dlog A)[lp — q.

Proof: Was seen in class.

In the next class we will discuss the following Lemma, which essentially complete the proof of
Theorem 2.

Lemma 6: Let T be a shifted quadtree. Then with high probability 2 MST 7 (P) is an O(dlog A)-
approximation for MST(P).
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