
Sublinear Time and Space Algorithms 2022B – Lecture 7

Euclidean MST (cont’d) and `0-sampling∗

Robert Krauthgamer

1 Euclidean MST (cont’d)

We want to complete the algorithm for Euclidean MST from last class. Previously, we analyzed
the distance between a pair of points p, q (how the quadtree distorts their Euclidean distance), and
now we analyze the MST of n points.

Lemma: MSTT (P) ≥ 1
2 MST(P). (For a randomly shifted quadtree, this holds with probability

1.)

Exer: Prove this lemma using what we proved before for pairs p, q ∈ [∆]d.

Lemma: Let T be a randomly shifted quadtree. Then with high probability MSTT (P) ≤
O(d log ∆) ·MST(P).

Proof: Was seen in class, using linearity of expectation to bound ET
[

MSTT (P).

Putting it together: These two lemmas show that with high probability, 2 MSTT (P) is an
O(d log ∆)-approximation for MST(P). We saw earlier how to (1 + ε)-approximates MSTT (P)
using storage (ε−1d log(∆))O(1) bits, and we can use it with ε = 0.1. Altogether, we obtain a
streaming algorithm for Euclidean MST, which proves the theorem.

Exer: Use similar ideas for the minimum bichromatic matching problem (aka earthmover dis-
tance), where the points in P are colored, half in blue and half in red, i.e., P = R ∪ B, and the
goal is to compute a minimum-weight perfect matching between R and B.

Hint: Reduce the problem to estimating ‖x(i)‖1 for each level i.

Another Euclidean MST algorithm [Frahling, Indyk and Sohler, 2008]: There is a
streaming algorithm for (1 + ε)-approximation of MST using storage of (ε−1 log ∆)O(d) bits.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

2 `0-sampling

Problem Definition (`p-sampling): Let x ∈ Rn be the frequency vector of the input stream.

The goal is to draw a random index from [n] where each i has probability |xi|
p

‖x‖pp
.

We will see today the case p = 0, where the goal is to draw a uniformly random i from the set
supp(x) = {i ∈ [n] : xi 6= 0}.

Algorithms may have some errors either in the probabilities being approximately correct (e.g., ±δ)
and/or that with some probability the algorithm gives a wrong answer (returns FAIL or a sample
not according to the desired distribution).

Framework for `0-sampling [following Cormode and Firmani, 2014]:

(A) Subsample the coordinates of x with geometrically decreasing rates

(B) Detect if the resulting vector y is 1-sparse

(C) If y is 1-sparse, recover its nonzero coordinate.

(A) Subsampling:

The algorithm chooses a random hash function h : [n]→ [log n], such that for each i ∈ [n],

Pr[h(i) = l] = 2−l, ∀l ∈ [log n].

(The probabilities do not sum up to 1, and in the remaining probability we can set h(i) to nil, i.e.,
no level.)

For each “level” l ∈ [log n], create a virtual stream for the coordinates in h−1(l), formally defined
as y(l) ∈ Rn which is obtained from x by zeroing out coordinates outside h−1(l).

Observe that y is obtained from x by a linear map.

Lemma: If x 6= 0, then there exists l ∈ [log n] for which Pr[|supp(y)| = 1] = Ω(1).

Proof: Was seen in class.

Exer: Show that whenever supp(y) contains only one coordinate, that coordinate is indeed drawn
uniformly from supp(x).

Exer: Show how to achieve a similar guarantee (for |supp(y)| = 1) using a hash function h that
is only pairwise independent. (However, now the “surviving” coordinate might be non-uniform.)

The success probability (getting |supp(y)| = 1) can be increased to 1 − δ by O(log 1
δ) repetitions.

The overall result is a O(log n log 1
δ) virtual streams y.

(C) Sparse recovery (of a 1-sparse vector): Suppose y ∈ Rn (which is y(l) from above) is
1-sparse. How can we find which coordinate i is nonzero?

Compute A =
∑

i yi and B =
∑

i i · yi and report their ratio B/A.

For 1-sparse vector the output is always correct, as this step is deterministic.

Notice that A,B form a linear sketch whose size (dimension) is 2 words. Thus, they can be easily

2

maintained over the virtual stream y (and also over the original stream x), even in the presence of
deletions.

(B) Detection (if a vector is 1-sparse):

Lemma: There is a linear sketch to detect whether y is 1-sparse, using O(log n) words and
achieving one-sided error probability 1/n3 (i.e., if |supp(y)| = 1 it always accepts, otherwise it
accepts with probability at most 1/n3).

Proof: Was seen in class, using the AMS sketch to test if `2 norm is zero.

Exer: Show how to improve the storage to O(1) words by a more direct approach.

Hint: Use a linear map (of y) with random coefficients from [−n3, n3].

Overall Algorithm:

The algorithm goes over all virtual streams (all levels and all repetitions) in a fixed order, and
reports the first coordinate that is recovered successfully and passes the detection test. If none of
them succeeded, it reports FAIL.

Storage: The total storage is O(log2 n log 1
δ) words, not including randomness.

However, using limited randomness in the subsampling (necessary to reduce randomness) might
introduce some bias to the uniform probabilities.

Variations of this approach: Detection and recovery of vectors with sparsity s = 1/ε instead of s = 1,
using k-wise independent hashing in the subsampling, or using Nisan’s pseudorandom generator to
reduce storage.

Theorem [Jowhari, Saglam and Tardos, 2011]: There is a streaming algorithm with storage
O(log2 n log 1

δ) bits, that with probability at most δ reports FAIL, with probability at most 1/n2

reports an arbitrary answer, and with the remaining probability produces a uniform sample from
supp(x).

3

	Euclidean MST (cont'd)
	0-sampling

