
Sublinear Time and Space Algorithms 2022B – Lecture 8

Streaming of Graphs and Connectivity in Dynamic Graphs∗

Robert Krauthgamer

1 Streaming of Graphs

Basic model: Consider an input stream that represents a graph G = (V,E) as a sequence of
edges on the vertex set V = [n]. Denote m = |E|.

It can be viewed as an insertion-only stream of edges. We may allow deletions of edges, and then
it is called a dynamic graph stream.

Semi-streaming: The usual aim is space requirement Õ(n), which can generally be much smaller
than the trivial bound O(m) of storing the current graph explicitly (but without extra workspace
an algorithm may need).

For many problems, Ω(n) storage is required (even to get approximate answers).

Connectivity: Determine whether the graph G is connected (or even which pairs u, v ∈ V are
connected).

In the insertions-only model, it can be solved with storage requirement O(n) words, by maintaining
a spanning forest...

Distances: Maintain all the distances in the graph, i.e., given a query u, v ∈ V report their
distance.

Theorem: Can be solved within approximation 2k − 1 (for integer k ≥ 1) in the insertions-only
model with storage requirement O(n1+1/k) words.

The idea is to use a greedy spanner construction by [Althofer, Das, Dobkin, Joseph and Soares,
1993].

Proof: Create and store a subgraph G′ as follows. When an edge (u, v) arrives, check if the
distance between its endpoints in G′ is dG′(u, v) ≤ 2k − 1. If it is not, then add the edge to G′

(otherwise, do nothing).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

It is not difficult to verify that

∀u, v ∈ V, dG(u, v) ≤ dG′(u, v) ≤ (2k − 1)dG(u, v).

The bound on the number of edges in G′ follows by a theorem from extremal graph theory, because
its girth (length of shortest cycle) is g ≥ 2k + 1.

Exer: Show how to 2-approximate maximum matching and vertex-cover using space of O(n)
words.

2 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G.
Recall that we assume V = [n].

The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending

b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can
be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage
Õ(n) that determines whp whether the graph is connected (In fact, it computes a spanning forest
and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current
component. Using `0-sampling and especially its linear-sketch form, we can pick an outgoing edge
from an arbitrary set. Informally, if we already have a connected component Q ⊂ V , then we will
use a method where edges inside Q get canceled, and outgoing edges survive.

Notation: Let N =
(
n
2

)
. and for each vertex v define a vector xv ∈ RN where coordinate {i, j} for

i < j is given by

xv{i,j} =

+1 if (i, j) ∈ E and v = i

−1 if (i, j) ∈ E and v = j

0 otherwise.

Algorithm AGM:

Update (on a stream/dynamic graph G):

For each vertex v, create a virtual stream for xv ∈ RN and maintain an `0-sampler for this xv

(using the same coins, as these are linear sketches that can be added).

Repeat the above log n times independently (i.e., log n “levels” of samplers for each v ∈ V).

Output (to determine connectivity):

2

Initialize a partition Π = {{1}, . . . , {n}} where each vertex is in a separate connected component.

Now repeat for l = 1, . . . , log n:

1. For each connected component Q ∈ Π, sum the samplers (more precisely, their sketches) for all
v ∈ Q from level l, to obtain a sampler for

∑
v∈Q xv. Then activate the sampler to pick a coordinate

from [N] (which we will see is a random outgoing from Q).

2. Use the |Q| sampled edges to merge connected components and update Π

Output “connected” if all the vertices are merged into one connected component.

Analysis: To simplify the analysis, we assume henceforth that G is connected (see below), and
that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that G is not connected, to determine whether s, t ∈ V
given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is k > 1 (and
the samplers succeed in producing outgoing edges), then their number at the end of the iteration
is at most k/2.

Exer: prove this claim.

Claim 2: Fix a set Q ⊂ V . Then
∑

v∈Q xv is nonzero only in coordinates {i, j} corresponding to
an edge outgoing from Q, i.e., |Q ∩ {i, j}| = 1.

Proof: Was seen in class.

Corollary 3: Fix a set Q ⊂ V . Then summing `0-samplers of xv over all v ∈ Q (assuming these
samplers use a linear sketch) creates an `0-sampler for

∑
v∈Q xv that reports an outgoing edge from

Q.

Storage: The main storage is for `0-samplers for every vertex. Each one requires O(log4 n) bits
(in the construction seen in class), and we need fresh randomness in each of the O(log n) iterations
(levels), to avoid potential dependencies. Thus the total storage is O(n log5 n) bits.

3

	Streaming of Graphs
	Connectivity in Dynamic Graphs

