Sublinear Time and Space Algorithms 2022B – Lecture 11 Sublinear-Time Algorithms for Sparse Graphs^{*}

Robert Krauthgamer

1 Approximating Average Degree in a Graph

Problem definition:

Input: An *n*-vertex graph represented (say) as the adjacency list for each vertex (or even just the degree of each vertex).

Goal: Compute the average degree (equiv. number of edges).

Concern: Seems to be impossible e.g. if all degrees ≤ 1 , except possibly for a few vertices whose degree is about n.

Theorem 1 [Feige, 2004]: There is an algorithm that estimates the average degree d of a connected graph within factor $2 + \varepsilon$ in time $O((\frac{1}{\varepsilon})^{O(1)}\sqrt{n/d_0})$, given a lower bound $d_0 \leq d$ and $\varepsilon \in (0, 1/2)$.

We will prove the case of $d_0 = 1$ (i.e., suffices to know G is connected).

Main idea: Use the fact that it is a graph (and not just a list of degrees), although this will show up only in the analysis.

Algorithm:

1. Choose $s = c\sqrt{n}/\varepsilon^{O(1)}$ vertices at random with replacement, denote this multiset by S and compute the average degree d_S of these vertices.

2. Repeat the above $t = 8/\varepsilon$ times, denoted S_1, \ldots, S_t and report the *smallest* seen estimate $\min_{i \in [t]} d_{S_i}$.

Analysis: We will need 2 lemmas.

Lemma 1a: In each iteration, $\Pr[d_S < (\frac{1}{2} - \varepsilon)d] \le \varepsilon/64$.

Lemma 1b: In each iteration, $\Pr[d_S > (1 + \varepsilon)d] \leq 1 - \varepsilon/2$.

Proof of theorem: Follows easily from the two lemmas, as seen in class.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Proof of Lemma 1b: Follows from Markov's inequality, as seen in class.

Proof of Lemma 1a: Was seen in class, using the fact the degrees form a graph, by considering the high-degree vertices $H \subset V$ and the rest $L = V \setminus H$, and counting edges inside/between them. We saw that a suitable $s = \tilde{O}(\varepsilon^{-2} \max\{|H|, n/|H|\})$ works.

Exer: Explain how to extend the result to any $d_0 \ge 1$.

2 Maximum Matching

Problem definition:

Input: An *n*-vertex graph G = (V, E) of maximum degree D, represented as the adjacency list for each vertex.

Definition: A matching is a set of edges that are incident to distinct vertices.

Goal: Compute the maximum size of a matching in G.

Note: The matching is too large to report in sublinear time, we only estimate its cost using (α, β) -approximation, i.e., $OPT \leq ALG \leq \alpha \ OPT + \beta$.

Algorithm GreedyMatching:

1. Start with an empty matching M.

2. Scan the edges (in arbitrary order), and add each edge to M unless it is adjacent to an edge already in M.

Lemma: The size of a maximal matching is at least half that of a maximum matching.

Exer: Prove this lemma.