
Sublinear Time and Space Algorithms 2022B – Lecture 11

Sublinear-Time Algorithms for Sparse Graphs∗

Robert Krauthgamer

1 Approximating Average Degree in a Graph

Problem definition:

Input: An n-vertex graph represented (say) as the adjacency list for each vertex (or even just the
degree of each vertex).

Goal: Compute the average degree (equiv. number of edges).

Concern: Seems to be impossible e.g. if all degrees ≤ 1, except possibly for a few vertices whose
degree is about n.

Theorem 1 [Feige, 2004]: There is an algorithm that estimates the average degree d of a
connected graph within factor 2 + ε in time O((1ε )O(1)

√
n/d0), given a lower bound d0 ≤ d and

ε ∈ (0, 1/2).

We will prove the case of d0 = 1 (i.e., suffices to know G is connected).

Main idea: Use the fact that it is a graph (and not just a list of degrees), although this will show
up only in the analysis.

Algorithm:

1. Choose s = c
√
n/εO(1) vertices at random with replacement, denote this multiset by S and

compute the average degree dS of these vertices.

2. Repeat the above t = 8/ε times, denoted S1, . . . , St and report the smallest seen estimate
mini∈[t] dSi .

Analysis: We will need 2 lemmas.

Lemma 1a: In each iteration, Pr[dS < (12 − ε)d] ≤ ε/64.

Lemma 1b: In each iteration, Pr[dS > (1 + ε)d] ≤ 1− ε/2.

Proof of theorem: Follows easily from the two lemmas, as seen in class.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



Proof of Lemma 1b: Follows from Markov’s inequality, as seen in class.

Proof of Lemma 1a: Was seen in class, using the fact the degrees form a graph, by considering
the high-degree vertices H ⊂ V and the rest L = V \H, and counting edges inside/between them.
We saw that a suitable s = Õ(ε−2 max{|H|, n/|H|}) works.

Exer: Explain how to extend the result to any d0 ≥ 1.

2 Maximum Matching

Problem definition:

Input: An n-vertex graph G = (V,E) of maximum degree D, represented as the adjacency list for
each vertex.

Definition: A matching is a set of edges that are incident to distinct vertices.

Goal: Compute the maximum size of a matching in G.

Note: The matching is too large to report in sublinear time, we only estimate its cost using (α, β)-
approximation, i.e., OPT ≤ ALG ≤ α OPT + β.

Algorithm GreedyMatching:

1. Start with an empty matching M .

2. Scan the edges (in arbitrary order), and add each edge to M unless it is adjacent to an edge
already in M .

Lemma: The size of a maximal matching is at least half that of a maximum matching.

Exer: Prove this lemma.

2


	Approximating Average Degree in a Graph
	Maximum Matching

