1 Approximating Average Degree in a Graph

Problem definition:
Input: An \(n\)-vertex graph represented (say) as the adjacency list for each vertex (or even just the degree of each vertex).

Goal: Compute the average degree (equiv. number of edges).

Concern: Seems to be impossible e.g. if all degrees \(\leq 1\), except possibly for a few vertices whose degree is about \(n\).

Theorem 1 [Feige, 2004]: There is an algorithm that estimates the average degree \(d\) of a connected graph within factor \(2 + \varepsilon\) in time \(O((\frac{1}{\varepsilon})^{O(1)}\sqrt{n/d_0})\), given a lower bound \(d_0 \leq d\) and \(\varepsilon \in (0, 1/2)\).

We will prove the case of \(d_0 = 1\) (i.e., suffices to know \(G\) is connected).

Main idea: Use the fact that it is a graph (and not just a list of degrees), although this will show up only in the analysis.

Algorithm:
1. Choose \(s = c\sqrt{n}/\varepsilon^{O(1)}\) vertices at random with replacement, denote this multiset by \(S\) and compute the average degree \(d_S\) of these vertices.
2. Repeat the above \(t = 8/\varepsilon\) times, denoted \(S_1, \ldots, S_t\) and report the smallest seen estimate \(\min_{i \in [t]} d_{S_i}\).

Analysis: We will need 2 lemmas.

Lemma 1a: In each iteration, \(\Pr[d_S < (\frac{1}{2} - \varepsilon)d] \leq \varepsilon/64\).

Lemma 1b: In each iteration, \(\Pr[d_S > (1 + \varepsilon)d] \leq 1 - \varepsilon/2\).

Proof of theorem: Follows easily from the two lemmas, as seen in class.
Proof of Lemma 1b: Follows from Markov’s inequality, as seen in class.

Proof of Lemma 1a: Was seen in class, using the fact the degrees form a graph, by considering the high-degree vertices \(H \subset V \) and the rest \(L = V \setminus H \), and counting edges inside/between them. We saw that a suitable \(s = \tilde{O}(\varepsilon^{-2} \max\{|H|, n/|H|\}) \) works.

Exer: Explain how to extend the result to any \(d_0 \geq 1 \).

2 Maximum Matching

Problem definition:

Input: An \(n \)-vertex graph \(G = (V, E) \) of maximum degree \(D \), represented as the adjacency list for each vertex.

Definition: A matching is a set of edges that are incident to distinct vertices.

Goal: Compute the maximum size of a matching in \(G \).

Note: The matching is too large to report in sublinear time, we only estimate its cost using \((\alpha, \beta)\)-approximation, i.e., \(OPT \leq ALG \leq \alpha OPT + \beta \).

Algorithm GreedyMatching:

1. Start with an empty matching \(M \).
2. Scan the edges (in arbitrary order), and add each edge to \(M \) unless it is adjacent to an edge already in \(M \).

Lemma: The size of a maximal matching is at least half that of a maximum matching.

Exer: Prove this lemma.