
Randomized Algorithms 2023A – Lecture 10

Probabilistic Embedding into Dominating Trees (cont’d) and

Importance Sampling∗

Robert Krauthgamer

1 Probabilistic Embedding into Dominating Trees (cont’d)

We completed the proof of the following theorem (from last time).

Theorem 2 [Bartal’96, Fakcharoenphol-Rao-Talwar’03]: Every n-point metric admits a
probabilistic embedding into dominating trees with distortion O(log n).

Recall that Algorithm B (described last time) computes a hierarchical decomposition PL, . . . , P1, P0,
which in turn defines a dominating tree T , whose leaves are the points of X.

Analysis: We say that a center w separates a pair {x, y} ⊂ X at level i if x, y are in the same
cluster of Pi+1 but in different clusters of Pi, and w is the center that “caused” this, i.e., the first
point (according to π) that “captures” exactly one of x, y (at level i).

Lemma 6: For every x, y ∈ X,

E[dT (x, y)] ≤
L∑
i=0

∑
w∈X

Pr[w separates {x, y} at level i] · 2i+2.

Proof: As seen in class, it follows easily form Lemma 3.

Lemma 7 (contribution of a single center): Fix x, y ∈ X. Arrange X = {w1, . . . , wn} in
order of increasing distance from the set {x, y} (breaking ties arbitrarily). Then

∀s ∈ [n],
∑
i

Pr[ws separates {x, y} at level i] · 2i+2 ≤ O(1s ) · d(x, y).

Completing the proof of Theorem 2: Plugging Lemma 7 into Lemma 6,

∀x, y ∈ X, E[dT (x, y)] ≤
n∑
s=1

O(1s ) · d(x, y) ≤ O(log n) · d(x, y).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



QED.

Proof of Lemma 7: Was seen in class by carefully breaking the event into two events, roughly
one about β and one about the ordering π.

Exer: Prove that Algorithm A outputs a partition P of X where all clusters have diameter at
most 2i+1, and for x, y with d(x, y) ≤ 2i−3,

Pr[x, y are in different clusters of P ] ≤ O
(

log
|B({x,y},2i−1)|
|B({x,y},2i−3)|

)
· d(x,y)

2i+1 ,

where B({x, y}, r) is the set of points within distance at most r from {x, y} (analogous to a ball of
some radius around a point).

Observe that this gives the bound needed in Lemma 5 with α = O(log n).

2 Importance Sampling

Sampling is often used to estimate a sum. When the variance is too large, this method can offer
reduce the variance. The idea is to sample, instead of uniformly, in a “focused” manner that roughly
imitates the contributions, but one of course has to “factor out” the bias in this sampling.

Setup: We want to estimate z =
∑

i∈[n] zi without reading all the zi values. The main concern
is that the zi are unbounded, and thus most of the contribution might come from a few unknown
elements. If we happen to have a “good enough” lower bound on each element zi, then we can
sample with probability pi ≥ Ω( ziz ).

Theorem 1 [Importance Sampling]: Let z =
∑

i∈[n] zi, and λ ≥ 1. Let Ẑ be an estimator

obtained by sampling a single index î ∈ [n] according to distribution (p1, . . . , pn) where
∑

i∈[n] pi = 1

and each pi ≥ zi
λz , and setting Ẑ = zî/pî. Then

E[Ẑ] = z and σ(Ẑ) ≤
√
λE[Ẑ].

Proof: was seen in class.

Exer: Show that averaging t = O(λ/ε2) independent repetitions of the above approximates z
within factor 1± ε with success probability at least 3/4.

Hint: use Chebyshev’s inequality.

Exer: Prove a variant of Theorem 1, where each zi is read independently with probability
qi ≥ min{1, t ziz }, in which case it contributes zi

qi
(and otherwise contributes 0). Show that with

high probability, the number of values read is O(
∑

i qi) and the estimate is (1±O(1/
√
t))z.

Hint: The difference is here we decide whether to read each zi independently, while in Theorem 1
we read at each step exactly one value zi.

2



2.1 Counting DNF solutions via Importance Sampling

Problem definition: The input is a DNF formula f with m clauses C1, . . . , Cm over n variables
x1, . . . , xn, i.e., f = ∨mi=1Ci where each Ci is the conjunction of literals like x2 ∧ x̄5 ∧ xn.

The goal is the estimate the number of Boolean assignments that satisfy f .

Theorem 2 [Karp and Luby, 1983]: Let S ⊂ {0, 1}n be the set of satisfying assignments
for f . There is an algorithm that estimates |S| within factor 1 + ε in time that is polynomial in
m+ n+ 1/ε.

2.2 Counting: A first attempt

Random assignments: Sample t random assignments, and let Z count how many of them are
satisfying. We can estimate |S| by Z/t · 2n.

Formally, we can write Z =
∑t

i=1 Zi where each Zi is an indicator for the event that the i-th sample
satisfies f . We can see it is an unbiased estimator:

E[Z · 2n/t] =
t∑
i=1

E[Zi] · 2n/t = |S|.

Observe that Var(Z) = 1
t2
∑

i Var(Zi · 2n) = 1
t Var(Z1 · 2n). But even though we can use Chernoff-

Hoeffding bounds since Zi are independent, it’s not very effective because the variance could be
exponentially large than the expectation.

Exer: Show that the standard deviation of Z (for t = 1) could be exponentially large relative to
the expectation.

2.3 Counting: A second attempt

Idea: We can bias the probability towards the assignments that are satisfying, but then we will
need to “correct” the bias.

Let Si ∈ {0, 1}n be all the assignments that satisfy the i-th clause, hence |Si| = 2n−len(Ci).

Remark: The naive approach does not use the DNF structure at all. We can use this structure by
writing S = ∪iSi, which can be expanded using the inclusion-exclusion formula, but it would be
too complicated to estimate efficiently.

Algorithm E:

1. Choose a clause Ci with probability proportional to |Si| (namely, |Si|/M where M =
∑

i |Si|).

2. Choose at random an assignment a ∈ Si.

3. Compute the number ya of clauses satisfied by a.

4. Output Z = M
ya

.

3



Claim 2a: E[Z] = |S| (i.e., this algorithm’s output is unbiased).

Claim 2b: σ(Z) ≤ m · E[Z].

The proofs are straightforward and were seen in class.

Exer: Show that |S| can be approximated within factor 1 ± ε with success probability at least
3/4, by averaging O(m2/ε2) independent repetitions of the above.

Hint: use Chebyshev’s inequality.

Exer: Show how to improve the success probability to 1−δ by increasing the number of repetitions
by an O(log 1

δ ) factor.

Exer: Explain this DNF counting algorithm using the importance sampling theorem.

Hint: Think about the relative contribution of each assignment â to |S|.

4


	Probabilistic Embedding into Dominating Trees (cont'd)
	Importance Sampling
	Counting DNF solutions via Importance Sampling
	Counting: A first attempt
	Counting: A second attempt


