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Robert Krauthgamer

1 Coresets for Clustering

Let D(·, ·) denote the Euclidean distance in Rd.

Geometric Clustering: In the k-median problem the input is a set of n data points X =
{x1, . . . , xn} ⊂ Rd, and the goal is to find a set of k centers C = {c1, . . . , ck} ⊂ Rd that minimizes
the objective function

f(X,C) :=
∑
x∈X

D(x,C) =
∑
i∈[n]

min
j∈[k]
‖xi − cj‖2.

Note that the centers are not required be from X (the version with this requirement is called
discrete centers).

The k-means problem is similar but using squared distances.

Notation: We shall omit the subscript from all norms, as we always use `2 norms.

Observe that points need not be distinct, i.e., we consider multisets, which is equivalent to giving
every point an integer weight, and admits a succinct representation. We thus would like to reduce
the number of distinct points, denoted throughout by |X|.

Strong Coreset: Let ε ∈ (0, 1/2) be an accuracy parameter. We say that S ⊂ Rd is a strong
ε-coreset of X (for objective f , which in our case is k-median) if

∀C = {c1, . . . , ck} ⊂ Rd, f(X,C) ∈ (1± ε)f(S,C).

Note: A weak coreset is similar, except the above requirement is only for the optimal centers for
the coreset, i.e., C ′ that minimizes f(S,C ′).

Goal: We want to construct small coresets. If done without computing an optimal solution C∗,
then it would be useful for computing a near-optimal solution, because it suffices to solve k-median
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on the smaller instance S. If the construction requires computing C∗, it could still be useful when
sending (communicating) or storing the data.

We focus henceforth on existence (of coresets of a certain size), the algorithmic implementation
and applications are usually straightforward.

2 Coresets via Geometric Decomposition

Idea: Discretize the space to create a small set Ŝ, and “snap” every point in X to its nearest
neighbor in S. Throughout, the (closed) ball of radius r > 0 about c ∈ Rd is defined as

B(c, r) = {z ∈ Rd : ‖z − c‖ ≤ r}.

Lemma 1 (ε-Ball Cover): For every ε ∈ (0, 1), the unit ball B = B(~0, 1) in Rd can be covered
by (3/ε)d balls of radius ε.

The conclusion is that every point in the unit ball can be “approximated” by one of those (3/ε)d

centers, with additive error ε. This argument immediately extends to any ball of radius r > 0,
except that the additive error is now εr.

Exer: Prove this lemma.

Hint: Construct the covering iteratively, and use the volume estimate vol(B(c, r)) = rd ·vol(B(~0, 1)).

Theorem 2: Every setX of n points in Rd admits an ε-coreset S of cardinality |S| = O(k(9/ε)d log n).

Proof: Was seen in class.

Exer: Modify the above proof to be algorithmic, by using an O(1)-approximation to the minimum
cost (meaning a set C ′ such that f(X,C ′) ≤ O(1) ·f(X,C∗)), which can be computed in polynomial
time.

Exer: Extend this argument to k-means using the following generalized triangle inequality: For
every a, b, c ∈ Rd and ε ∈ (0, 1),∣∣‖a− c‖2 − ‖b− c‖2∣∣ ≤ 12

ε ‖a− b‖
2 + 2ε‖a− c‖2.

2.1 Strong Coresets via Importance Sampling

Definition: The sensitivity of a point x ∈ X is

s(x) := sup
c∈Rd

‖x− c‖∑
z∈X ‖z − c‖

,

and the total sensitivity of X is S(X) =
∑

x∈X s(x).

Observe that for a given c ∈ Rd (i.e., without the supremum) the above ratio is the “desired”
sampling probability in Importance Sampling.
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Importance Sampling approach: Suppose we sample one point, where each x ∈ X is picked
with probability q(x) := s(x)

S(X) . We then give the sampled x new weight 1
q(x) . Of course, we should

average a few repetitions to reduce variance.

Lemma 3: S(X) ≤ 6.

Lemma 4: Let Y be a multiset of m ≥ 24/ε2 points, each sampled iid from X according to q(·).
Then

∀c ∈ Rd, Pr
[

1
m

∑
y∈Y

‖y − c‖
q(y)

∈ (1± ε)
∑
x∈X
‖x− c‖

]
≥ 3/4.

This does not give a strong coreset, but it is an important step in that direction.

Proof of Lemma 3: Was seen in class by bounding each s(x) ≤ 4
n + ‖x−c∗‖

OPT/2 .

Proof of Lemma 4: Was seen in class by applying the Importance Sampling Theorem seen in
the previous class for each y ∈ Y .

Amplifying the probability: We would like to improve the success probability in Lemma 9 to
1− δ. Using Chebyshev’s inequality, this would require increasing m by a factor of 1

δ .

Using Chernoff-Hoeffding concentration bounds would be better and require increasing m only by
a factor of O(log 1

δ ). But for this, we need that no one sample y ∈ Y ever contributes too much,
which indeed holds in our setting.

Lemma 5: Ẑ ≤ S(X) · E[Ẑ] with probability 1.

Exer: Prove this lemma.

Lemma 6: The success probability in Lemma 4 can be improved 1− δ by using m ≥ Lε−2 log 1
δ

for a suitable constant L > 0.

Exer: Prove this lemma using concentration bounds.

Strong Coreset: To obtain a strong coreset, we must consider any c ∈ Rd. If there were only a
few potential centers, then we could apply Lemma 11 to each of them together with a union bound.

The idea is then to discretize the space of potential centers using the ε-ball cover lemma, and show
that it suffices to consider only these centers. Then it would suffice to apply Lemma 4 and a union
bound.

Theorem 7: Let Y be a multiset of m ≥ L′dε−2 log 1
ε points from X, each sampled iid according

to distribution q(.) and reweighted by w(x) = 1
mq(x) , for a suitable constant L′ > 0. Then with

high probability, Y is a strong coreset for the 1-median of X.

Due to time constraints, we saw in class only an outline of the proof, which is based on the lemma
below, and on discretizing the possible centers using a ball cover (namely, a cover of the ball
B∗ = B(c∗, 1ε

OPT
n ) by balls of radius εOPT

n ).

One potential obstacle is the total weight of Y . It need not be n, but with high probability should
be close.
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Lemma 8: Under the conditions of Lemma 6, i.e., m ≥ Lε−2 log 1
δ ,

Pr[w(Y ) ∈ (1± ε)n] ≥ 1− δ.

Exer: Prove this lemma using concentration bounds.

Hint: Write w(Y ) = 1
m

∑
y∈Y

1
q(y) , show a bound 1

q(x) ≤ O(n) (with probability 1), and then use
concentration bound.
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