
Randomized Algorithms 2023A – Lecture 13

Concentration Bounds and Edge-Sparsification of Hypergraphs∗

Robert Krauthgamer

1 Concentration Bounds

Chernoff-Hoeffding bound: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n] are independently
distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t
2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Exer: Let X be binomial B(n, 1/3). What is the probability that X deviates from its expectation
additively by r > 1 standard deviations? Think of r being 10, log n,

√
n, and compare the different

bounds.

Exer: Let a1, . . . , an be an array of numbers in the range [0, 1]. Design a randomized algorithm
that estimates their average within ±ε (i.e., additive error ε) by reading only O(1/ε2) elements.
The algorithm should succeed with probability at least 90%.

Exer: Let S1, . . . , Sn be subsets of [n]. Design an algorithm for 2-coloring the elements [n], such
that in every set Si the balance, defined as |#black−#white|, is at most O(

√
n log n).

2 Edge-Sparsification of Hypergraphs (via Importance Sampling)

Cuts in Hypergraphs: Let H = (V,E,w) be a hypergraph with edge weights w : E 7→ R+.
Every (nontrivial) S ⊂ V defines a cut

δH(S) := {e ∈ E : both e ∩ S 6= ∅, e ∩ S̄ 6= ∅}.
∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and

possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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For every subset of edges E′ ⊂ E define w(E′) =
∑

e∈E′ w(e), which in particular defines the weight
of a cut S as w(δH(S)).

Cut sparsifier: Let H = (V,E,w) be a hypergraph, and let ε ∈ (0, 1). A hypergraph H ′ =
(V,E′, w′) (on same vertex set) is a (1 + ε)-cut-sparsifier if

∀S ⊂ V, w′(δ′H(S)) ∈ (1± ε)w(δH(S)).

Theorem 1 [Kogan and Krauthgamer, 2015]: For every n-vertex hypergraph H = (V,E,w)
and every ε ∈ (0, 1/2), there is a (1 + ε)-cut-sparsifier H ′ with m = O(n2/ε2) hyperedges.

The original proof was an extension of an earlier result, by [Benczur and Karger, 1996], which
introduced this sparsification concept for graphs (all hyperedges are of size 2) and proved a (better)
bound of O(ε−2n log n) edges and also gave an algorithm with near-linear running time. We will
see a different proof based on Importance Sampling. The sparsification bound for hypergraphs was
recently improved to O(ε−2n log n) by [Chen, Khanna, and Nagda, 2020].

Idea: We will construct H ′ by sampling m edges, where each edge is drawn according to proba-
bilities {p(e)}e∈E , and a sampled edge e is given new weight w′(e) = w(e)

mp(e) . It follows immediately

that the expected weight of a (every) cut S in H ′ equals the weight of the same cut S in H. Viewing
this as importance sampling, it will be easy to reduce the variance. But this holds only for any one
cut S, and a sparsifier H ′ requires a guarantee for all cuts, and thus we will prove a concentration
bound and then apply a union bound.

Construction of sparsifier: For each edge e ∈ E define its sensitivity

s(e) := max
S⊂V : e∈δH(S)

w(e)

w(δH(S))
,

and define the total sensitivity to be s(E) =
∑

e∈E s(e).

Construct H ′ at random by picking m edges from H, each chosen independently according to the
distribution on edges given by p(e) = s(e)

S(E) , and every edge e ∈ E that is chosen is given a new

weight w′(e) = w(e)
m p(e) .

Remark: This construction may create parallel edges, because the same edge may be picked multiple
times (up to m). We can always merge parallel edges at the end, which does not change the weight
of any cut, but it will be easier for us to analyze the hypergraph before such merges.

Expectation:

∀S ⊂ V, E[w′(δH′(S))] = m
∑

e∈δH(S)

p(e)
w(e)

m p(e)
=

∑
e∈δH(S)

w(e) = w(δH(S)).

Lemma 2: s(E) ≤ n2.

Proof: Was seen in class by “charging” the sensitivity of each hyperedge to the minimum cut
between a pair of vertices.

Lemma 2’: s(E) ≤ n− 1.
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Exer: Prove this bound by repeatedly removing from G a minimum cut whose removal increases
the number of connected components by 1 (this is a global minimum cut in one of the components).

Hint: It then suffices to show that in each of the n − 1 iterations, the sensitivity of the removed
edges sums up to at most 1.

Lemma 3 (Importance Sampling): Let S ⊂ V and λ = s(E). Then

∀e ∈ δH(S), p(e) ≥ 1

λ

w(e)

w(δH(S))
.

Proof: Given our S and e,

p(e) =
s(e)

s(E)
≥ 1

s(E)

w(e)

w(δH(S))
.

QED

Corollary 4: If m ≥ c · s(E) for a suitable c = c(ε) > 0, then

∀S ⊂ V, Pr[w′(δH′(S)) ∈ (1± ε)w(δH(S))] ≥ 3/4.

Proof: Using the importance sampling theorem we saw in previous classes, and the bound in
Lemma 3, Var(w′(δH′(S))) ≤ m · 1

m2 · λ · (w(δH(S)))2 = (12εw(δH(S)))2. The corollary now follows
by Chebyshev’s inequality.

QED

Proof of Theorem 1: Was seen in class, by proving a concentration bound for each cut, and
then applying a union bound over all 2n cuts.

Exer: Show that with high probability the total weight of all edges of H ′ is approximately equal
to that in H, i.e., w′(E′) = Θ(w(E)).

Exer: Analyze a variant of this algorithm, where the sampling is different: Independently for each
edge e ∈ E, with probability q(e) = min{1, O(ε−2n) · s(e)} add this edge to H ′ with new weight

w′(e) = w(e)
q(e) , and otherwise do not add to H ′. Note that now the number of edges is random (and

has to be analyzed).

3 Coresets for Clustering (cont’d)

We finished the proof of a theorem from an earlier class (stated next for completeness).

Theorem 7: Let Y be a multiset of m ≥ L′dε−2 log 1
ε points from X, each sampled iid according

to distribution q(.) and reweighted by w(x) = 1
mq(x) , for a suitable constant L′ > 0. Then with

high probability, Y is a strong coreset for the 1-median of X.

Proof of Theorem 7 (sketch): Discretize the set of possible centers by considering a cover of
the ball B∗ = B(c∗, 1ε

OPT
n ) by balls of radius εOPT

n , and letting N be the set of all their center
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points. Applying Lemma 5 to each c′ ∈ N with δ = 1
4|N | and taking a union bound over all c′ ∈ N ,

we get that with probability at least 1− |N |δ ≥ 3/4,

∀c′ ∈ N, f(Y, c′) ∈ (1± ε)f(X, c′). (1)

Assuming this event holds, we derive a slightly weaker bound for all possible centers, namely,

∀c ∈ Rd f(Y, c) ∈ (1± 8ε)f(X, c).

The proof was seen in class, by distinguishing two cases, c ∈ B∗ and c /∈ B∗. In the former, we
”replace” c with a nearby c′ ∈ N , and in the latter we “appproximate” both f(X, c) and f(Y, c) by
n‖c− c∗‖).
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