
Randomized Algorithms 2023A – Lecture 6

Least Squares Regression and Probabilistic Embedding into

Dominating Trees∗

Robert Krauthgamer

1 Least Squares Regression

Problem definition: In Least Squares Regression, the input is a matrix A ∈ Rn×d and a vector
b ∈ Rn, and the goal is to find argmin{‖Ax∗ − b‖ : x∗ ∈ Rd}.

Informally, when solving a system Ax∗ = b that is over-constrained (n � d), we do not expect to
find an exact solution, and we want to minimize the sum of squared errors

∑
i(Aix

∗ − bi)2.

We shall consider (1 + ε)-approximation, i.e., finding x′ ∈ Rd such that

‖Ax′ − b‖ ≤ (1 + ε) min
x∗∈Rd

‖Ax∗ − b‖. (1)

Theorem: Let S ∈ Rs×n be an (ε, δ, d + 1)-OSE matrix. Then for every regression instance
A ∈ Rn×d and b ∈ Rn, with high probability, an optimal solution x′ (or even (1+ε)-approximation)
to the regression instance 〈SA, Sb〉 is a (1 + O(ε))-approximation to the instance 〈A, b〉, i.e., such
x′ satisfies (1).

This theorem essentially reduces a regression problem with n constraints to regression with s
constraints, but we should take into account also the time to compute SA.

Proof: As explained in class, it follows from applying the OSE guarantee to the linear subspace
spanned by the columns of A and by b (total of d+ 1 vectors), and then

(1− ε)‖Ax′ − b‖ ≤ ‖SAx′ − Sb‖ = min
x∈Rd
‖SAx− Sb‖ ≤ (1 + ε) min

x∗∈Rd
‖Ax∗ − b‖.

2 Metric Embeddings

Definition (metric space): We say that (X, d) is a metric space, if X is a set (of points), and
d : X × X → R+ (a distance function) is symmetric, non-negative (with 0 only between a point

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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and itself), and satisfies the triangle inequality.

Prime examples: A simple example is the Euclidean space Rd. Or one can take a subset of its
points.

Given a graph with positive (or non-negative) edge weights G = (V,E,w), its shortest-path metric
dG is a metric on the vertex set V . Or one can take a subset V ′ ⊂ V .

Optimization problems: Many optimization problems are naturally defined on metric spaces,
for example TSP and k-median. (The input may specify a subset of the points to be visited,
clustered, potential centers, etc.)

Definition (embedding): An embedding of a metric space (X, dX) into a metric space (Y, dY )
is a map f : X → Y . Its distortion is the least D = D1D2 ≥ 1 such that

∀x, x′ ∈ X, 1

D1
dX(x, x′) ≤ dY (f(x), f(x′)) ≤ D2 · dY (dX(x, x′)).

Remark: In many cases, we can scale distances in Y and thus assume WLOG that D1 = 1 (or
alternatively D2 = 1).

Definition (tree metric): A metric space (X, d) is called a tree metric if there exists a tree G
such that

Exer: Show that a metric space (X, d) is a tree metric if and only if it satisfies the following
(called 4-point condition)

∀x, y, z, w ∈ X, d(w, x) + d(y, z) ≤ max{(d(w, y) + d(x, z), d(w, z) + d(x, y)}.

Many optimization problems can be solved in polynomial time in tree metrics, including TSP and
k-median (hint: use dynamic programming).

Observation: Given a metric space (X, dX) and a distortion-D embedding of it into a tree metric
(Y, dY ), one can compute a D-approximate solution for TSP and k-median.

This promising approach has the following serious obstacle, which we will bypass using randomiza-
tion.

Theorem 1 [Rabinovich and Raz, 1998]: Every embedding of the shortest-path metric of Cn,
an unweighted n-cycle, into a tree metric has distortion Ω(n).

Remark: This special case where the tree metric is a spanning tree of Cn is easy, the general case
requires a proof.

Example [Karp]: Let T be a spanning tree of Cn that is obtained by removing uniformly random
edge. Then for all x, y ∈ Cn,

dT (x, y) ≥ dCn(x, y).

E[dT (x, y)] ≤ 2dCn(x, y).

Remark: Extends to a cycle with edge lengths by sampling proportionally to the edge lengths.
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2.1 Probabilistic Embedding

Probabilistic embedding into trees: A probabilistic embedding of a metric (X, d) into trees is
a probability distribution over mappings f : X → T and tree metrics (T, dT ).

The tree T is called dominating if

∀x, y ∈ X, dT (f(x), f(y)) ≥ d(x, y).

The probabilistic embedding has distortion D ≥ 1 if

∀x, y ∈ X, dT (f(x), f(y)) ≤ D · d(x, y).

Remark 1: As we saw above, the n-cycle Cn admits a probabilistic embedding into dominating
trees with distortion 2.

Remark 2: T is random (not fixed) and may contain Steiner points (points that are not images
under f).

2.2 Probabilistic Embedding into Dominating Trees

Theorem 2 [Bartal’96, Fakcharoenphol-Rao-Talwar’03]: Every n-point metric admits a
probabilistic embedding into dominating trees with distortion O(log n).

Example application I: Metric TSP:

Given a TSP instance which is an n-point metric space (X, d), apply the theorem to randomly
construct a tree T with metric dT . Now solve TSP on this tree optimally by going around the tree
twice (assuming all leaves are point in X, otherwise we can prune such vertices). Finally, output
the same tour (same permutation of points) as a solution to TSP on (X, d).

Analysis: First bound the algorithm’s performance

ALG(X, d) ≤ ALG(X, dT ) = TSP (X, dT ),

then bound the expectation of the optimum in the tree

E[TSP (X, dT )] ≤ O(log n)TSP (X, d).

Key property: the objective is linear in the distances.

Remark: It works similarly even with O(1)-approximation for TSP in trees.

Remark: There is a much better algorithm for metric TSP (approximation 2 by twice MST, and
even 3/2 by Christofides), but this approach works also for generalizations like vehicle routing.

Example application II: k-median:

Given an n-point metric (X, d), find a set S ⊂ X of k points (called medians) that minimizes∑
x∈X d(x, S).
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Again, apply the theorem to construct a tree T with metric dT , and solve the instance optimally
using dynamic programming along the tree. The analysis is similar.

Another example: min-sum clustering (again break X into k sets, but now the objective is the sum
of distances among all pairs inside the same set).

Proof of Theorem 2:

Assume WLOG that the minimum interpoint distance in X is 2, and denote the maximum as
∆ = diam(X), and δ = dlog2 ∆e.

We may refer to X as a complete graph, to every pair of points (x, y) as an edge.

The main usage of this theorem is that it “reduces” problems about X to problems about a tree
(metric), which is usually easier. We will see/discuss these applications in the next class.

Definition (hierarchical decomposition): A hierarchical decomposition of X is a sequence
PL, . . . , P1, P0 of partitions of X, such that

a) PL = {X} (the trivial partition)

b) each Pi is a refinement of Pi+1, i.e., each element of Pi, referred to as a cluster S ⊆ X, is
contained entirely in some cluster of Pi+1.

c) all clusters in Pi have diameter at most 2i. Thus, P0 =
{
{x} : x ∈ X

}
(all clusters are singletons).

Building a tree: Given a hierarchical decomposition, we build a tree metric T with L+ 1 levels,
where the vertices at level i are the clusters of Pi. Start with a root that corresponds to the single
cluster X of PL. Let each cluster of Pi be the child of the cluster in Pi+1 that contains it, and let
the edge between them have length 2i. The leaves correspond to clusters that are singletons, and
we can thus let the embedding f map each x ∈ X to the leaf which is the singleton cluster {x}.

Exer: Extend the proof below to obtain a tree T ′ whose vertex set is exactly X (without additional
vertices).

Hint: Get rid of non-leaf vertices in T by “mapping” them to leaves.

Lemma 3: For every two points x, y ∈ X there is a unique integer i such that x, y are in the
same cluster of Pi+1 but not of Pi. Moreover, dT (x, y) ∈ [2 · 2i, 4 · 2i).

Proof: immediate.

Lemma 4: This (hierarchical) tree metric dT dominates (X, d).

Proof: immediate from Lemma 3 (and seen in class).

Lemma 5: Suppose the hierarchical decomposition is randomized and guarantees, for a certain
α > 0, that

∀x, y ∈ X,∀i, Pr[x, y are in different clusters of Pi] ≤ α · d(x,y)2i+1 .

Then the embedding has distortion O(α log ∆), i.e., E[dT (x, y)] ≤ O(α log ∆)d(x, y).

Remark: This is weaker than Theorem 2, and we will later show a stronger bound.
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Proof: Was seen in class.

2.3 Randomized Decomposition

Intuition: We start with a randomized algorithm that partitions X into clusters of diameter 2i

(without a hierarchy).

Algorithm A (partitioning X at a given scale 2i):

1. choose a random permutation π : [n]→ X and a random β ∈ [1, 2]

2. initialize P ← ∅

3. for l = 1 to n do

4. add to P a new cluster consisting of all point in X that are within distance βi = β2i−2 from
π(l) ∈ X and are not already in any cluster of P .

Observations:

a) Every cluster has a “center” point π(l), but it need not contain the center.

b) We can think of lines (3-4) as if each vertex in X assigns itself to the first center, according to
the order π, within distance βi.

c) Every cluster has diameter at most 2βi ≤ 2i.

d) The algorithm may create empty clusters but we can discard them.

Algorithm B (for hierarchical partitioning of X):

1. choose a random permutation π : [n]→ X and a random β ∈ [1, 2]

2. initialize PL ← {X}

3. for i = L− 1 down to 0 do

4. let Pi ← ∅

5. for l = 1 to n do

6. for every cluster S ∈ Pi+1

7. add to Pi a new cluster consisting of all points in S that are within distance βi = β2i−2

from π(l) and are not already in any cluster of Pi.

Observation: This is like applying Algorithm A recursively to partition each S ∈ Pi+1, except
that the “centers” are taken from all of X and not only from S. Another difference is that all scales
use the same π and β.

We will analyze this algorithm and finish the proof of Theorem 2 next time.
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