Sublinear Time and Space Algorithms 2024A - Lecture 10 Sublinear-Time Algorithms for Vertex Cover in Planar Graphs*

Robert Krauthgamer

1 Vertex Cover in Planar Graphs via Local Partitioning

Problem definition:

Input: A graph $G=(V, E)$ on n vertices. We shall assume G is planar, has maximum degree $\leq d$, and is represented using adjacency lists.

Definition: A vertex-cover is a subset $V^{\prime} \subset V$ that is incident to every edge.
Goal: Estimate $\operatorname{VC}(G)=$ the minimum size of a vertex-cover of G.
Theorem 1 [Hassidim, Kelner, Nguyen and Onak, 2009]: There is a randomized algorithm that, given $\varepsilon>0$ and a planar graph G with maximum degree $\leq d$, estimates whp $\operatorname{VC}(G)$ within additive εn and runs in time $T(\varepsilon, d)$ (independent of n).

Main idea: Fix "implicitly" some near-optimal solution. Then estimate it's size by sampling $s=$ $O\left(1 / \varepsilon^{2}\right)$ random vertices and checking whether they belong to that solution.

Initial analysis: Let SOL be the implicit solution computed by the algorithm, let X_{i} for $i=$ $1, \ldots, s=O\left(1 / \varepsilon^{2}\right)$ be an indicator for whether the i-th chosen vertex belongs to SOL. The algorithm outputs $\frac{n}{s} \sum_{i} X_{i}$. We will need to prove:

$$
\begin{aligned}
|\mathrm{SOL}-\mathrm{VC}(G)| & \leq \varepsilon n \\
\operatorname{Pr}\left[\left|\frac{n}{s} \sum_{i} X_{i}-\mathrm{SOL}\right|\right. & \leq \varepsilon n] \geq 0.9
\end{aligned}
$$

The last inequality follows immediately from Chebychev's inequality, since each $X_{i}=1$ independently with probability SOL/ n.
Definition: We represent a partition of the graph vertices as $P: V \rightarrow 2^{V}$. It is called an $(\varepsilon, k)-$ partition if every part $P(v)$ has size at most k, and at most $\varepsilon|V|$ edges go across between different parts.

Theorem 2: For every $\varepsilon, d>0$ there is a polynomial $k^{*}=k^{*}(\varepsilon, d)$ such that every planar G with max-degree $\leq d$ admits an $\left(\varepsilon, k^{*}\right)$-partition.

[^0]It is proved using the famous Planar Separator Theorem (which we will not prove).
Planar Separator Theorem [Lipton and Tarjan, 1979]: In every planar graph $G=(V, E)$ there is a set S of $O(\sqrt{|V|})$ vertices such that in $G \backslash S$, every connected component has size at most $n / 2$.

Remark: It extends to excluded-minor families.
Exer: Prove Theorem 3 by using the planar separator theorem recursively. What k^{*} do you get?
Our sublinear algorithm will not compute this partition directly (even through the Planar Separator Theorem is algorithmic), and instead it will use a "local" algorithm to compute another partition (with somewhat worse parameters).

Proof Plan for Theorem 1: Given an (ε, k)-partition P of G, we define the solution SOL by taking some optimal solution in each part of P, and adding one endpoint for each cross-edge. The following lemma is immediate.

Lemma 1a: $\mathrm{VC}(G) \leq \mathrm{SOL} \leq \mathrm{VC}(G)+\varepsilon n$.
Proof: Since VC(\cdot) is monotone in adding edges,

$$
\mathrm{SOL} \leq \mathrm{VC}(G \backslash \operatorname{cross}(P))+\epsilon n \leq \mathrm{VC}(G)+\epsilon n .
$$

The remaining (and main) challenge is to design an algorithm that can compute $P(v)$ for a queried vertex $v \in V$ in constant time. This is called a partition oracle.

Note: P could be random, but should be "globally consistent" for the different queries v.
Definition: An $\left(\varepsilon^{\prime}, k^{\prime}\right)$-isolated neighborhood of $v \in V$ is a set $S \subset V$ that contains v, has size $|S| \leq k^{\prime}$, the subgraph induced on S is connected, and the number of edges leaving S is $\mathrm{e}_{\text {out }}(S) \leq \varepsilon^{\prime}|S|$.

Algorithm Partition (used later as oracle):

Remark: It uses parameters $\varepsilon^{\prime}, k^{\prime}$ that will be set later (in the proof)

1. $P=\emptyset$
2. iterate over the vertices in a random order π_{1}, \ldots, π_{n}
3. if π_{i} is still in the graph then
4. if π_{i} has an $\left(\varepsilon^{\prime}, k^{\prime}\right)$-isolated neighborhood in the current graph
5. then $S=$ this neighborhood
6. \quad else $S=\left\{\pi_{i}\right\}$
7. add $\{S\}$ to P and remove S from the graph
8. output P

Lemma 1b: Fix $\varepsilon^{\prime}>0$. Then a random vertex in G has probability at least $1-2 \varepsilon^{\prime}$ to have a $\left(k^{*}\left(\varepsilon^{\prime 2}, d\right), \varepsilon^{\prime}\right)$-isolated neighborhood.
Proof of Lemma 1b: Was seen in class, by considering the $\left(\varepsilon^{\prime 2}, k^{*}\left(\varepsilon^{\prime 2}, d\right)\right)$-partition guaranteed to exist by Theorem 2 .

We will continue next class, and show that the above algorithm indeed provides a partition oracle.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

