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Sublinear-Time Algorithms for Vertex Cover in Planar Graphs∗

Robert Krauthgamer

1 Vertex Cover in Planar Graphs via Local Partitioning

Problem definition:

Input: A graph G = (V,E) on n vertices. We shall assume G is planar, has maximum degree ≤ d,
and is represented using adjacency lists.

Definition: A vertex-cover is a subset V ′ ⊂ V that is incident to every edge.

Goal: Estimate VC(G) = the minimum size of a vertex-cover of G.

Theorem 1 [Hassidim, Kelner, Nguyen and Onak, 2009]: There is a randomized algorithm
that, given ε > 0 and a planar graph G with maximum degree ≤ d, estimates whp VC(G) within
additive εn and runs in time T (ε, d) (independent of n).

Main idea: Fix “implicitly” some near-optimal solution. Then estimate it’s size by sampling s =
O(1/ε2) random vertices and checking whether they belong to that solution.

Initial analysis: Let SOL be the implicit solution computed by the algorithm, let Xi for i =
1, . . . , s = O(1/ε2) be an indicator for whether the i-th chosen vertex belongs to SOL. The algorithm
outputs n

s

∑
iXi. We will need to prove:

|SOL−VC(G)| ≤ εn
Pr[|ns

∑
iXi − SOL| ≤ εn] ≥ 0.9

The last inequality follows immediately from Chebychev’s inequality, since each Xi = 1 indepen-
dently with probability SOL/n.

Definition: We represent a partition of the graph vertices as P : V → 2V . It is called an (ε, k)-
partition if every part P (v) has size at most k, and at most ε|V | edges go across between different
parts.

Theorem 2: For every ε, d > 0 there is a polynomial k∗ = k∗(ε, d) such that every planar G with
max-degree ≤ d admits an (ε, k∗)-partition.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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It is proved using the famous Planar Separator Theorem (which we will not prove).

Planar Separator Theorem [Lipton and Tarjan, 1979]: In every planar graph G = (V,E)
there is a set S of O(

√
|V |) vertices such that in G \ S, every connected component has size at

most n/2.

Remark: It extends to excluded-minor families.

Exer: Prove Theorem 3 by using the planar separator theorem recursively. What k∗ do you get?

Our sublinear algorithm will not compute this partition directly (even through the Planar Separator
Theorem is algorithmic), and instead it will use a “local” algorithm to compute another partition
(with somewhat worse parameters).

Proof Plan for Theorem 1: Given an (ε, k)-partition P of G, we define the solution SOL by
taking some optimal solution in each part of P , and adding one endpoint for each cross-edge. The
following lemma is immediate.

Lemma 1a: VC(G) ≤ SOL ≤ VC(G) + εn.

Proof: Since VC(·) is monotone in adding edges,

SOL ≤ VC(G \ cross(P )) + εn ≤ VC(G) + εn.

The remaining (and main) challenge is to design an algorithm that can compute P (v) for a queried
vertex v ∈ V in constant time. This is called a partition oracle.

Note: P could be random, but should be “globally consistent” for the different queries v.

Definition: An (ε′, k′)-isolated neighborhood of v ∈ V is a set S ⊂ V that contains v, has
size |S| ≤ k′, the subgraph induced on S is connected, and the number of edges leaving S is
eout(S) ≤ ε′|S|.

Algorithm Partition (used later as oracle):

Remark: It uses parameters ε′, k′ that will be set later (in the proof)

1. P = ∅
2. iterate over the vertices in a random order π1, . . . , πn
3. if πi is still in the graph then
4. if πi has an (ε′, k′)-isolated neighborhood in the current graph
5. then S = this neighborhood
6. else S = {πi}
7. add {S} to P and remove S from the graph
8. output P

Lemma 1b: Fix ε′ > 0. Then a random vertex in G has probability at least 1 − 2ε′ to have a
(k∗(ε′2, d), ε′)-isolated neighborhood.

Proof of Lemma 1b: Was seen in class, by considering the (ε′2, k∗(ε′2, d))-partition guaranteed
to exist by Theorem 2.

We will continue next class, and show that the above algorithm indeed provides a partition oracle.
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