
Sublinear Time and Space Algorithms 2024A – Lecture 11

Planar Vertex Cover (cont’d) and Sampling an Edge Uniformly∗

Robert Krauthgamer

1 Vertex Cover in Planar Graphs via Local Partitioning (cont’d)

After last week, it remained to prove that the algorithm below provides a partition oracle.

Algorithm Partition (used later as oracle):

Remark: It uses parameters ε′, k′ that will be set later (in the proof)

1. P = ∅
2. iterate over the vertices in a random order π1, . . . , πn
3. if πi is still in the graph then
4. if πi has an (ε′, k′)-isolated neighborhood in the current graph
5. then S = this neighborhood
6. else S = {πi}
7. add {S} to P and remove S from the graph
8. output P

Lemma 1c: For every ε > 0, Algorithm Partition above with parameters ε′ = ε/(12d) and
k = k∗(ε′2, d) computes whp an (ε, k)-partition. Moreover, it can be implemented as a partition
oracle (given a query vertex, it returns the part containing that vertex), whose running time (and

query complexity into G) to answer q non-adaptive queries is whp at most q · 2dO(k)
.

Proof of Lemma 2c: By construction, the output P is a partition, and every part in it has size
at most k.

Analyzing the number of cross-edges in P : for each i = 1, . . . , n define two random variables related
to πi, as follows. Let Si = P (πi), i.e. the set S ∈ P that contains πi (note it is removed from
the graph in iteration i or earlier), and define Xi = eout

′(Si)/|Si|, where eout
′(Si) is the number of

edges at the time of removing Si. Notice that a nontrivial iteration create one part S ∈ P , and
thus “sets” |S| variables Xi all to the same value, thus

∑
iXi =

∑
S∈P eout

′(S) is the number of
cross-edges in P (each edge is counted once, because the graph changes with the iterations).

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Now fix i. Since πi is a random vertex, by Lemma 1a, with probability ≥ 1− 2ε′, it has an (ε′, k)-
isolated neighborhood in the input G, and then Xi ≤ ε′ (this is certainly true if πi was removed at
an earlier iteration). This argument applies also to the current graph, because a subgraph of G is
still planar with degrees bounded by d (formally, we need to condition on the first i− 1 iterations).
With the remaining probability ≤ 2ε′, we bound Xi ≤ d which always holds. Altogether,

E[Xi] ≤ 1 · ε′ + 2ε′ · d ≤ 3ε′d.

E[
∑
i

Xi] ≤ 3ε′dn.

By Markov’s inequality, with probability ≥ 3/4, the number of cross-edges in P is at most
4(3ε′dn) = εn.

Implementation as an oracle: We generate the permutation π on the fly by assigning each vertex
v a priority r(v) ∈ [0, 1] (and remember previously used values). Before computing P (v), we
first compute (recursively) P (w) for all vertices w within distance at most 2k from v that satisfy
r(w) < r(v). (Note that a vertex w at distance 2k−2 might affect v by causing removal of a vertex
mid-way between v and w.) If v ∈ P (w) for one of them, then P (v) = P (w). Otherwise, search by
brute-force for a (ε′, k)-isolated neighborhood of v, keeping in mind that vertices in any P (w) as
above are no longer in the graph.

Running time: We effectively work in an auxiliary graph H, where we connect two vertices if their
distance in G is at most 2k. Thus, the maximum degree in H is at most D = d2k. As seen earlier,
this means the expected number of vertices inspected recursively is at mostDO(D) = 2D

O(1)
= 2d

O(k)
.

QED

Concluding Theorem 1: Lemma 1c designs a partition oracle, and thus completes (the proof
of) the algorithm for vertex cover.

2 Sampling an Edge Uniformly

Problem definition: Input: A graph G = (V,E) with n = |V | vertices and m = |E| edges
represented as the adjacency list for each vertex (thus can access the degree and outgoing edges of
any vertex).

Goal: report an edge sampled uniformly from E.

Easy case: If G is regular (all vertices have the same degree), one can sample uniformly a vertex
and then sample uniformly an outgoing edge.

The problem is harder when the graph is not regular, not even approximately.

Theorem [Eden, Narayanan and Tetek, 2023]: There is an algorithm that, given also m,
samples an edge uniformly in expected time O(n/

√
m). (In fact, an O(1)-approximation to m

suffices.)

Remark: If G is connected, we saw that O(1)-approximation to m can be computed in time O(
√
n),

which can be absorbed in O(n/
√
m).
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We will see today a weaker result of [Eden and Rosenbaum, 2018], where the output distribution
is within (1 + ε)-approximation (pointwise):

∀e ∈ E, Pr[output = e] ∈ (1± ε) 1
|E| .

This algorithm always outputs an edge, and its expected running time is O(n/
√
εm). One can of

course terminate it after slightly more time and output FAIL, and argue that it happens with small
probability by Markov’s inequality.

Exer (example application): Show how to estimate within additive ±δ (whp) the fraction of
edges inside a subset S ⊂ V by using O(1/δ2) independent samples of of a uniformly random edge.

Proof plan: Think of every edge as two directed anti-parallel edges (as in the regular case).
Our goal is to report every directed edge uv with the same probability, and report FAIL with the
remaining (small) probability. The final algorithm repeats this until the output is an edge (and not
FAIL).

Fix a threshold θ =
√

2m/ε, and partition V based on vertex degrees into light and heavy, namely
L = {v ∈ V : deg(v) ≤ θ} and H = V \ L.

A (directed) edge uv is called light if its tail u is light. Otherwise the edge is called heavy.

Sampling a light edge: Sample uniformly a vertex u′ and check it is light, then sample uniformly
j ∈ [θ] and check if the j-th edge from u′ exists. If both checks pass, report that j-th edge.
Otherwise report FAIL. Clearly

∀ light edge uv, Pr[output = uv] = 1
nθ . (1)

Sampling a heavy edge: First sample a light edge u′v′ as described above. Now check that the head
v′ is heavy. and sample uniformly an incident edge v′w′. If the check passes report the edge v′w′.
Otherwise report FAIL. Let degL(v) denote the number of light edge from v′; then

∀ heavy edge vw, Pr[output = vw] = degL(v)
nθ · 1

deg(v) . (2)

Lemma: If v ∈ H then degL(v)
deg(v) ∈ [1− ε, 1].

Proof: degH(v) ≤ |H| ≤ 2m
θ = εθ < ε deg(v).

Caveat: Which of the two cases/algorithms should we run? Here it’s easy, we just pick between
the two options with equal probabilities.

Rejection sampling: The above uses a technique called rejection sampling, where the algorithm
may decide to reject the sample, i.e., report FAIL instead. It could be because the sample turns
out to be “bad” (e.g., the vertex is not light), or with some probability (e.g., fixed or that depends
on the sample-at-hand) to effectively reduce the probability of reporting this sample.

Algorithm ApproxSample:

Input: G, m, ε
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1. u′ ← uniformly random vertex
2. j ← U([θ]), where θ =

√
m/ε

3. if deg(u′) > θ or j > deg(u′) then return FAIL
4. v′ ← j-th neighbor of u′

5. b← Bernoulli(1/2)
6. if b = 1 then
7. return u′v′

8. else if v′ is heavy then
9. w′ ← random neighbor of v′

10. return v′w′

11.return FAIL

Analysis: Based on (1),(2) and the Bernoulli variable b:

∀ light edge uv, Pr[output = uv] = 1
2nθ ;

∀ heavy edge vw, Pr[output = vw] = 1
2nθ · p(v), where p(v) = degL(v)

deg(v) ∈ [1− ε, 1].

The probability to report an edge (and not FAIL) is at least 2m · 1−εnθ = Ω(
√
εm
n ), hence the expected

number of attempts until sampling an edge is indeed O( n√
εm

).

QED

First Improvement: The output has a “bias” of factor p(v) = degL(v)
deg(v) .

The algorithm can estimate p(v) within additive δ, by picking O(1/δ2) random neighbors of v and
counting how many of them are light. This takes only O(1/δ2) time.

If the algorithm knows p(v) exactly, it could just add another round of rejection sampling: Keep a
light edge with probability 1− ε, and a heavy edge with probability 1−ε

p(v) ≤ 1. We could use fixed ε

(say ε = 1/3).

If p(v) ∈ [23 , 1] then having additive error δ is equivalent to multiplicative error 1 + O(δ). The
output will still be (1 + δ)-approximation of the distribution, but the running time improves from
multicplicative dependence (on ε) to additive dependence (on δ, recall ε = 1/3).

Second Improvement: Apply a method (called Bernoulli factory) that uses in expectation O(1)
Bernoulli variables (coins) with unknown parameter p ∈ [23 , 1] to generate a Bernoulli variable with

parameter 2/3
p (more precisely, a quantity proportional to 1

p) to “fix” the heavy case.

This crux is that the method is independent of p(v).

Remark: The method may use also coins of its own.

Exer: Give an example for such a method, for instance using random samples from B(p) to
generate B(1/2) (assuming p ≥ 2/3).
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