Sublinear Time and Space Algorithms 2024A - Lecture 12 Communication Complexity and Streaming Lower Bounds*

Robert Krauthgamer

1 Communication Complexity

Model: Two parties, called Alice and Bob, receive inputs x, y respectively. They can exchange messages, in rounds, until one of them (or both) reports an output $f(x, y)$.

Main measure is communication complexity, i.e., total communication between the parties (in bits, worst-case).

Variants of randomization: none (i.e., deterministic), shared/public, or private.
Number of rounds: zero (simultaneous, i.e., each sends a message to a referee and not directly to each other), one (one-way communication), or more/unbounded.

Many other variants, like more players communicating in series (or broadcast etc.), with different input model (e.g., number on forehead instead of number in hand).

Equality as an Example:

Problem definition: Alice and Bob's inputs are $x, y \in\{0,1\}^{n}$, and their goal is to compute $E Q(x, y)=\mathbb{1}_{\{x=y\}}$.
Public randomness: There is a (simultaneous) protocol with $O(1)$ bits.
Private randomness: There is a (one-way) protocol with $O(\log n)$ bits.
Deterministic one-way: Every protocol requires $\Omega(n)$ communication bits.

2 Indexing

Problem definition: Alice has input $x \in\{0,1\}^{n}$ and Bob has as input an index $i \in[n]$. Their goal is to output $\operatorname{INDEX}(x, i)=x_{i}$.

[^0]This function would be easy if Bob could send his (short) input to Alice. But we shall consider one-way communication from Alice to Bob, and her input is much longer.

Theorem 1 [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication complexity of indexing is $\Omega(n)$, even with shared randomness.

It's therefore a "canonical" problem for reductions (in this model).
We skipped the proof of this theorem (those interested can find a simple proof by [Jayram, Kumar and Sivakumar, 2008] that uses an error correcting code and some averaging arguments).

3 Streaming Lower Bounds: Exact ℓ_{0} norm

Theorem 2: Every streaming algorithm for computing ℓ_{0} norm exactly in \mathbb{R}^{n}, even a randomized one with error probability $1 / 6$, requires storage of $\Omega(n)$ bits.

Remark: This is true even for insertions-only streams.
Proof: Was seen in class, by reduction from the indexing problem.
Remark: Notice that our proof works even if random coins are not counted in the storage of the streaming algorithm (because we rely on a communication lower bound with public coins).

Exer: Show a similar lower bound for exact ℓ_{1}.
Hint: You obviously must use a stream with negative entries.
Exer: Prove that every streaming algorithm for graph connectivity on n vertices (i.e., deciding whether a stream of edge-insertions gives a connected graph), even a randomized one with error probability $1 / 3$, requires storage of $\Omega(n)$ bits.

4 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob's inputs are $x, y \in\{0,1\}^{n}$, respectively, and their goal is to determine whether the hamming distance between x, y is $\leq \frac{n}{2}-\sqrt{n}$ or $\geq \frac{n}{2}+\sqrt{n}$.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is $\Omega(n)$, even with shared randomness.

We skipped the proof of this theorem (those interested can find a proof by [Jayram, Kumar and Sivakumar, 2008] that uses a reduction from Indexing).

We mention in passing a stronger result, where the number of rounds is unbounded.
Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded number of rounds) of GHD is $\Omega(n)$, even with shared randomness.

5 Streaming Lower Bounds: Approximate ℓ_{0}

Theorem 4: Every streaming algorithm that $(1+\varepsilon)$-approximates ℓ_{0} in \mathbb{R}^{n} for $1 / \sqrt{n} \leq \varepsilon<1$, even a randomized one with error probability $1 / 6$, requires storage of $\Omega\left(1 / \varepsilon^{2}\right)$ bits.

Remark: For smaller $0<\varepsilon<1 / \sqrt{n}$, the required storage is $\Omega(n)$; to see this, observe that an algorithm for such "smaller" ε "solves" $\varepsilon=1 / \sqrt{n}$ which is covered by the above theorem.

We skipped the proof of this theorem (for those interested, it is by reduction from GHD).

6 Current Research Directions

We conclude with a brief mention of current research topics related to the course (e.g., using streaming/sketching techniques).

Streaming matrices: Different update models, different problems
Streaming (and sampling) edit distance: Different models of the input
Fast algorithms: in classic sense, for instance near-linear time
Dynamic algorithms: fast update time (no space constraints)
Massively Parallel Computing (MPC): a parallel computing model aiming to represent MapReduce and Hadoop (which are used in current data centers)

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

