
Sublinear Time and Space Algorithms 2024A – Lecture 12

Communication Complexity and Streaming Lower Bounds∗

Robert Krauthgamer

1 Communication Complexity

Model: Two parties, called Alice and Bob, receive inputs x, y respectively. They can exchange
messages, in rounds, until one of them (or both) reports an output f(x, y).

Main measure is communication complexity, i.e., total communication between the parties (in bits,
worst-case).

Variants of randomization: none (i.e., deterministic), shared/public, or private.

Number of rounds: zero (simultaneous, i.e., each sends a message to a referee and not directly to
each other), one (one-way communication), or more/unbounded.

Many other variants, like more players communicating in series (or broadcast etc.), with different
input model (e.g., number on forehead instead of number in hand).

Equality as an Example:

Problem definition: Alice and Bob’s inputs are x, y ∈ {0, 1}n, and their goal is to compute
EQ(x, y) = 1{x=y}.

Public randomness: There is a (simultaneous) protocol with O(1) bits.

Private randomness: There is a (one-way) protocol with O(log n) bits.

Deterministic one-way: Every protocol requires Ω(n) communication bits.

2 Indexing

Problem definition: Alice has input x ∈ {0, 1}n and Bob has as input an index i ∈ [n]. Their
goal is to output INDEX(x, i) = xi.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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This function would be easy if Bob could send his (short) input to Alice. But we shall consider
one-way communication from Alice to Bob, and her input is much longer.

Theorem 1 [Kremer, Nisan, and Ron, 1999]: The randomized one-way communication
complexity of indexing is Ω(n), even with shared randomness.

It’s therefore a “canonical” problem for reductions (in this model).

We skipped the proof of this theorem (those interested can find a simple proof by [Jayram, Kumar
and Sivakumar, 2008] that uses an error correcting code and some averaging arguments).

3 Streaming Lower Bounds: Exact `0 norm

Theorem 2: Every streaming algorithm for computing `0 norm exactly in Rn, even a randomized
one with error probability 1/6, requires storage of Ω(n) bits.

Remark: This is true even for insertions-only streams.

Proof: Was seen in class, by reduction from the indexing problem.

Remark: Notice that our proof works even if random coins are not counted in the storage of the
streaming algorithm (because we rely on a communication lower bound with public coins).

Exer: Show a similar lower bound for exact `1.

Hint: You obviously must use a stream with negative entries.

Exer: Prove that every streaming algorithm for graph connectivity on n vertices (i.e., deciding
whether a stream of edge-insertions gives a connected graph), even a randomized one with error
probability 1/3, requires storage of Ω(n) bits.

4 Gap Hamming Distance (GHD)

Problem definition: Alice and Bob’s inputs are x, y ∈ {0, 1}n, respectively, and their goal is to
determine whether the hamming distance between x, y is ≤ n

2 −
√
n or ≥ n

2 +
√
n.

Theorem 3 [Woodruff, 2004]: The randomized one-way communication complexity of GHD is
Ω(n), even with shared randomness.

We skipped the proof of this theorem (those interested can find a proof by [Jayram, Kumar and
Sivakumar, 2008] that uses a reduction from Indexing).

We mention in passing a stronger result, where the number of rounds is unbounded.

Theorem [Chakrabarti and Regev, 2011]: The communication complexity (with unbounded
number of rounds) of GHD is Ω(n), even with shared randomness.
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5 Streaming Lower Bounds: Approximate `0

Theorem 4: Every streaming algorithm that (1 + ε)-approximates `0 in Rn for 1/
√
n ≤ ε < 1,

even a randomized one with error probability 1/6, requires storage of Ω(1/ε2) bits.

Remark: For smaller 0 < ε < 1/
√
n, the required storage is Ω(n); to see this, observe that an

algorithm for such “smaller” ε “solves” ε = 1/
√
n which is covered by the above theorem.

We skipped the proof of this theorem (for those interested, it is by reduction from GHD).

6 Current Research Directions

We conclude with a brief mention of current research topics related to the course (e.g., using
streaming/sketching techniques).

Streaming matrices: Different update models, different problems

Streaming (and sampling) edit distance: Different models of the input

Fast algorithms: in classic sense, for instance near-linear time

Dynamic algorithms: fast update time (no space constraints)

Massively Parallel Computing (MPC): a parallel computing model aiming to represent Map-
Reduce and Hadoop (which are used in current data centers)
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