
Sublinear Time and Space Algorithms 2024A – Lecture 3

`1 and `2 Point Queries, Amplifying success probability∗

Robert Krauthgamer

1 `1 Point Query via CountMin

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ‖x‖p =
(
∑

i|xi|p)1/p be its `p-norm. Let α ∈ (0, 1) and p ≥ 1 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i ∈ [n], report x̃i
such that WHP

x̃i ∈ xi ± α‖x‖p.

Observe: ‖x‖1 ≥ ‖x‖2 ≥ . . . ≥ ‖x‖∞, hence higher norms (larger p) give better accuracy. We will
see an algorithm for `1, which is the easiest.

Exer: Show that the `1 and `2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for `2 and `∞.

It is not difficult to see that `∞ point query is hard. For instance, with α < 1/2 we could recover
an arbitrary binary vector x ∈ {0, 1}n, which (at least intuitively) requires Ω(n) bits to store.

Theorem 1 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for `1 point
queries that uses a (linear) sketch of O(α−1 log n) memory words to achieve accuracy α with success
probability 1− 1/n2.

We will initially assume all xi ≥ 0.

Algorithm CountMin:

(Assume all xi ≥ 0.)

1. Init: set w = 4/α and choose a random hash function h : [n]→ [w].

2. Update: maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j xi.

3. Output: to estimate xi report x̃i = Sh(i)

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Once again, the update step can be implemented in a streaming fashion because it is some linear
map L : Rn → Rw (observe that Sj =

∑
i 1{h(i)=j}xi).

We call S a sketch to emphasize it is a succinct version of the input, and L a sketching matrix.

Analysis (correctness): We saw in class that x̃i ≥ xi and Pr[x̃i ≥ xi + α‖x‖1] ≤ 1/4.

Algorithm CountMin+:

1. Run k = log n independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: the minimum of all estimates x̂i = minl∈[k] x̃
l
i

Analysis (correctness): As before, x̂i ≥ xi and

Pr[x̂i > xi + α‖x‖1] ≤ (1/4)k = 1/n2.

By a union bound, with probability at least 1−1/n, for all i ∈ [n] we will have xi ≤ x̂i ≤ xi+α‖x‖1.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

Exer: Let x ∈ Rn be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin+ sketch seen in class (for `1 point queries) to estimate the median of x, which
means to report an index j ∈ [n] that with high probability satisfies

∑j
i=1 xi ∈ (12 ± ε)m.

General x (allowing negative entries):

Observe that Algorithm CountMin actually extends to general x that might be negative, and
achieves the guarantee

Pr[x̃i /∈ xi ± α‖x‖1] ≤ 1/4.

Exer: complete the proof.

2 Amplifying Success Probability

To amplify the success probability of Algorithm CountMin (in general case), we use median of
independent repetitions (instead of minimum), and analyze it using the standard concentration
bounds, as follows.

Algorithm CountMin++:

1. Run k = O(log n) independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , Sk (and functions h1, . . . , hk)

2. Output: To estimate xi report the median of all basic estimates, i.e., x̂i = medianl∈[k] x̃
l
i

Lemma:

Pr[x̂i ∈ xi ± α‖x‖1] ≤ 1/n2.

2

Proof: as seen in class, we define an indicator Yl for the event that copy l ∈ [k] succeeds, then use
one of the concentration bounds below.

Chernoff-Hoeffding concentration bounds: Let X =
∑

i∈[n]Xi where Xi ∈ [0, 1] for i ∈ [n]
are independently distributed random variables. Then

∀t > 0, Pr[|X − E[X]| ≥ t] ≤ 2e−2t
2/n.

∀0 < ε ≤ 1, Pr[X ≤ (1− ε)E[X]] ≤ e−ε2 E[X]/2.

∀0 < ε ≤ 1, Pr[X ≥ (1 + ε)E[X]] ≤ e−ε2 E[X]/3.

∀t ≥ 2eE[X], Pr[X ≥ t] ≤ 2−t.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we
saw for Distinct Elements (say from constant to 1− 1/n2).

Hint: use independent repetitions + median.

3 `2 Point Query via CountSketch

The idea is to hash coordinates to buckets (similar to algorithm CountMin), but furthermore use
tug-of-war inside each bucket (as in algorithm AMS). The analysis will show it is a good estimate
with error proportional to ‖x‖2 instead of ‖x‖1.

Theorem 2 [Charikar, Chen and Farach-Colton, 2003]: One can estimate `2 point queries
within error α with constant high probability, using a linear sketch of dimension O(α−2). It implies,
in particular, a streaming algorithm.

This algorithm achieves better accuracy than CountMin (`2 instead of `1), but requires more storage
(1/α2 instead of 1/α).

Algorithm CountSketch:

1. Init: Set w = 4/α2 and choose a hash function h : [n]→ [w]

2. Choose random signs r1, . . . , rn ∈ {−1,+1}

3. Update: Maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j rixi.

4. Output: To estimate xi return x̃i = ri · Sh(i).

Storage requirement: O(w) = O(α−2) words, not counting storage of the random bits.

Correctness: We saw in class that Pr[|x̃i − xi|2 ≥ α2‖x‖22] ≤ 1/4, i.e., with high (constant)
probability, x̃i ∈ xi ± α‖x‖2.

Exer: Explain how to amplify the success probability to 1 − 1/n2 using the median of O(log n)
independent copies.

3

	1 Point Query via CountMin
	Amplifying Success Probability
	2 Point Query via CountSketch

