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Adversarially Robust Streaming, Flip-Number and Sketch

Switching∗

Shay Sapir

1 Adversarially Robust Streaming Algorithms

Consider tracking algorithms, which track a function throughout the stream updates.

Tracking algorithms: Let x(t) be the frequency vector after t updates. An algorithm is said to
be (ε, δ)-strong f -tracking if w.p. 1− δ, it outputs an estimate Rt ∈ (1± ε)f(x(t)) for all t ∈ [m].

Example: ℓ2-norm.

Exer: Design an (ε, δ)-strong ℓ2-tracking algorithm using O(ϵ−2 log(n/δ)) words.

Hint: amplify, by using O(log n
δ ) independent copies of AMS, and apply a union bound.

Until now, we only considered streams that are fixed in advance, i.e., do not depend on choices of
the algorithm. Streams that depend on outputs of the algorithm are called adaptive, and correspond
to interactions with the environment.

Adaptive streams: For t = 1, ...,m,

1. Adversary chooses the next stream update σt.

2. Streaming algorithm process σt and outputs an estimate Rt.

3. Adversary observes Rt.

Strong tracking algorithms in this model are called Adversarially Robust.

Note: The previous analysis of a strong tracking algorithm breaks, since the outputs of the copies
are not independent (informally, they depend on the stream, which depend on the other copies).

[Hardt-Woodruff, 2013]: Every adversarially robust linear sketch for ℓ2-norm must have sketch-
ing dimension Ω(n).

Intuition: the adversary can use the observations to learn the sketching matrix A (this is the
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difficult, technical part, and was not discussed), and then query a non-zero vector x such that
Ax = 0. The algorithm then must report the same output for x and 2x.

2 Flip Number and Sketch Switching

Theorem 1 [Ben-Eliezer,Jayaram,Woodruff,Yogev,2020]: In insertion-only streams, there
is an adversarially robust (1 + ϵ)-approximation algorithm for ℓ2-norm using Õ(ε−3) bits of space.

Flip number [BJWY20]: For a function f and stream σ, the flip number λε(f, σ) is the size
k of the largest subsequence 1 ≤ t1 ≤ ... ≤ tk ≤ m such that f(x(ti)) /∈ (1 ± ε)f(x(ti+1)) for all
i ∈ [k − 1]. The flip number of f is λε(f) = maxσ{λε(f, σ)}.

Lemma 2: In insertion-only streams, λε(∥·∥2) = O(ε−1 log n).

Proof: Was seen in class.

Algorithm Sketch Switching:

1. Init:

(a) ρ = 1, g = 0.

(b) initialize λ = λε/8(∥·∥2) independent copies of an (ε/8, δ/λ)-strong ℓ2-tracking algorithm,
denoted A1, ..., Aλ.

2. Update + Output: ∀σt,

(a) insert σt to A1, ..., Aλ.

(b) y ← current output of Aρ.

(c) if g /∈ (1± ε/2)y, then set g = y and increment ρ.

(d) output gt.

Space: Õ(ϵ−2λ) = Õ(ϵ−3) bits.

Analysis: We can assume the adversary is deterministic (Yao’s principle). Why? Consider
randomized adversary s.t. the algorithm fails w.p. p (over the randomness of alg + adversary).
Then by an averaging argument, there is at least one choice for the randomness of the adversary
for which the streaming algorithm fails w.p. p. Fix that randomness.

The proof is by induction. Let tρ be the time-step when the “if condition” was fulfilled for ρ, hence
from this time on, the algorithm “switches” to Aρ+1. Let yρ = Aρ(tρ). Consider an ‘imaginary’
output sequence, where the output for all t > tρ is yρ. For this output, the adversary responds
with a stream that is independent of Aρ+1. Hence, Aρ+1 is correct w.p. 1− δ/λ until the next time
that the “if condition” is fulfilled, and thus gt ∈ (1± ϵ)∥x(t)∥2.

Exer: Prove that the “if condition” is fulfilled at most λε/8(∥·∥2) times.

Exer: Design an adversarially robust streaming algorithm for ℓ1/ℓ2 point queries.
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3 Streams with deletions

λ can be as large as m if there are many insertions + deletions to the same coordinate.

More techniques:

1. Using differential privacy to protect the random coins of the algorithm, achieving space
Õϵ(
√
λ) [Hassidim, Kaplan, Mansour, Matias and Stemmer, 2022].1

2. Using sparse recovery for a sparse-dense tradeoff, to achieve space Õϵ(m
2/5) [Ben-Eliezer,

Eden, Onak 2022].

We discussed the following weaker version of BEO.

Theorem 3: There is an adversarially robust streaming algorithm for ℓ2-norm using Õε(m
2/3)

bits of space.

Sparse Recovery:

Input: x is a k-sparse vector.

Goal: recover x using a linear sketch of dimension Õ(k).

Exer: Show that CountMin/CountSketch with Õ(k) buckets solve Sparse Recovery.

High level algorithm of Theorem 3:

• If x is T -sparse, then maintain it explicitly.

• If x is T -dense (not sparse), then use the Sketch Switching algorithm.

• Use Sparse Recovery algorithm to recover x when it becomes sparse (after being dense).

Exer: Show that for T -dense vectors, λϵ(∥ · ∥) = Oε(m/
√
T ).

Space: the Sparse Recovery algorithm uses Õ(T ) bits, and the Sketch Switching uses Õε(m/
√
T )

bits of space. Pick T = m2/3, resulting in the desired space bound.

One may need to track the number of non-zeros in x in order to decide if the regime is sparse or
dense. This can be done using a Distinct Elements algorithm for streams with deletions, and by a
slight change of the algorithm: make it such that if x is 2T -dense then we use Sketch Switching,
and if ∥x∥0 ∈ [T, 2T ], then either maintain it explicitly or use Sketch Switching.

1The notation Õε(·) hides multiplicative factor poly(ε, logn).
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