
Sublinear Time and Space Algorithms 2024A – Lecture 6

Reservoir Sampling and `0-sampling∗

Robert Krauthgamer

1 Reservoir Sampling

Problem definition: Pick a uniformly random item from a stream of length at most m.

Reservoir Sampling [Vitter, 1985]:

1. Init: s = null

2. Update (next item a): increment j, and with probability 1/j let s = aj

3. Output: s

Lemma: Assuming stream items come from [n], this algorithm uses storage O(log(n + m)). Its
output is a uniform item from the stream, i.e., each position j is picked (and outputted) with the
same probability 1/m.

Note that items appearing many times are output with high probability.

Exer: Prove this lemma.

Exer: Design a streaming algorithm that at every time m (not known in advance) receives a
query S ⊂ [n] and outputs an estimate what fraction of items in the stream belong to S within
additive error ε. Note that S is given only at query time (not in advance).

Hint: Maintain O(1/ε2) random samples and use them to estimate the fraction in S.

Exer: Design an algorithm that samples k items without replacement from an input stream
σ = (σ1, . . . , σm). The algorithm’s memory requirement should be O(k) words. and the parameter
k is known in advance. Prove that the algorithm’s output has the correct distribution.

Hint: The goal is essentially to sample k distinct indices (i1 < · · · < is) uniformly at random.
In contrast, executing the Reservoir Sampling algorithm k times in parallel gives k samples with
replacement, i.e., the same i ∈ [m] could be reported more than once.

We next consider: more interesting distributions, for example taking duplicates into account.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

2 `0-sampling

Problem Definition (`p-sampling): Let x ∈ Rn be the frequency vector of the input stream.

The goal is to draw a random index from [n] where each i has probability |xi|
p

‖x‖pp
.

We will see today the case p = 0, where the goal is to draw a uniformly random i from the set
supp(x) = {i ∈ [n] : xi 6= 0}, i.e., it samples from the distinct elements in the stream.

Sampling algorithms may have errors either in the probabilities being approximately correct (e.g.,
±δ) and/or that with some probability they return a wrong answer (FAIL or a sample not according
to the desired distribution).

Framework for `0-sampling [following Cormode and Firmani, 2014]:

(A) subsample the coordinates of x with geometrically decreasing rates

(B) detect if the resulting vector y is 1-sparse

(C) if y is 1-sparse, recover its nonzero coordinate.

(A) Subsampling:

The algorithm chooses a random hash function h : [n]→ [log n], such that for each i ∈ [n],

Pr[h(i) = l] = 2−l, ∀l ∈ [log n].

(The probabilities do not sum up to 1, and in the remaining probability we can set h(i) to nil, i.e.,
no level.)

For each “level” l ∈ [log n], create a virtual stream for the coordinates in h−1(l), formally defined
as y(l) ∈ Rn obtained from x by zeroing coordinates outside h−1(l).

Observe that y is obtained from x by a linear map.

Lemma: If x 6= 0, then there exists l ∈ [log n] for which Pr[|supp(y)| = 1] = Ω(1).

Proof: Was seen in class.

Exer: Show that whenever supp(y) contains only one coordinate, that coordinate is indeed drawn
uniformly from supp(x).

Exer: Show that the lemma holds even if the hash function h is only pairwise independent.
(However, now the “surviving” coordinate might be non-uniform.)

The success probability (getting |supp(y)| = 1) can be increased to 1 − δ by O(log 1
δ) repetitions.

The overall result is a O(log n log 1
δ) virtual streams y.

(C) Sparse recovery (of a 1-sparse vector): Suppose y ∈ Rn (which is some y(l) from above)
is 1-sparse. How can we find which coordinate i is nonzero?

Compute A =
∑

i yi and B =
∑

i i · yi and report their ratio B/A.

For 1-sparse vector the output is always correct, as this step is deterministic.

Observe that A,B form a linear sketch whose size (dimension) is 2 words. Thus, they can be easily

2

maintained over the virtual stream y (and also over the original stream x), even in the presence of
deletions.

(B) Detection (if a vector is 1-sparse):

Lemma: There is a linear sketch to detect whether y ∈ Rn is 1-sparse, that has one-sided error
probability 1/n3 (i.e., if |supp(y)| = 1 it always accepts, otherwise it accepts with probability at
most 1/n3) and uses O(log n) words.

Proof: Was seen in class, using the AMS sketch to test if `2 norm is zero.

Exer: Show how to improve the storage to O(1) words by a more direct approach.

Hint: Use a linear map (of y) with random coefficients from [−n3, n3].

Overall Algorithm:

The algorithm goes over all virtual streams in a fixed order (all O(log n) levels and all O(log 1
δ)

repetitions), and reports the first coordinate that is recovered successfully and passes the detection
test. If none of them succeeded, it reports FAIL.

Storage: The total storage is O(log2 n log 1
δ) words, not including randomness.

Error: As seen in class, there are two possible bad events, and overall each i ∈ supp(x) is reported
with probability at least 1

|supp(x)| − δ − 1/n2.

However, using limited randomness in the subsampling (necessary to reduce randomness) might
introduce some bias to the uniform probabilities.

Variations of this approach: Detection and recovery of vectors with sparsity s = 1/ε instead of s = 1,
using k-wise independent hashing in the subsampling, or using Nisan’s pseudorandom generator to
reduce storage.

Theorem [Jowhari, Saglam and Tardos, 2011]: There is a streaming algorithm with storage
O(log2 n log 1

δ) bits, that with probability at most δ reports FAIL, with probability at most 1/n2

reports an arbitrary answer, and with the remaining probability produces a uniform sample from
supp(x).

3

	Reservoir Sampling
	0-sampling

